期刊文献+

基于多目标粒子群算法分布式电源的最优配置策略 被引量:1

Optimal Configuration Strategy for DG Based on Multi-objective Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 随着各种可再生能源发电技术逐渐成熟,将多类型分布式电源(Distributed Generation,DG)接入配电网(Distribution Network,DN)是促进电力系统能源转型的快捷方式。但是,大量的DG接入DN会导致DN运行稳定性下降,迫切寻找到解决方法。为此本文考虑了PV(Photovoltaic,PV)、风力发电(Wind Power Generation,WPG)和燃料电池(Fuel Cell,FC)三种DG,并以DG的经济性指标、电压偏差、电压波动以及网络损耗作为优化目标,采用多目标粒子优化算法(Multi-objective Particle Swarm Optimization,MOPSO)确定了三种DG接入DN的最优位置已经最佳容量,并与多目标蝗虫优化算法(Multi-objective Grasshopper Optimization Algorithm,MOGOA)进行了比较。基于IEEE-33节点仿真测试算例表明与未配置DG相比,通过MOPSO算法配置DG后,平均电压波动降低了0.055 p.u.(5.01%),网络损耗减少了646.65 kW(15.92%),并且,MOPSO配置成本更低,具有更好经济性。 With the gradual maturity of various renewable energy generation technologies,connecting multiple types of distributed generation(DG)to the distribution network(DN)is a quick way to promote the energy transformation of the power system.However,a large number of DG access to DN will lead to the decline of DN operation stability,so it is urgent tofind a solution.Photovoltaic(PV),wind power generation(WPG),fuel cell(FC)are considered in this paper,and the economic index,voltage deviation,voltagefluctuation and network loss of DG are taken as optimization objectives.The multi-objective particle swarm optimization(MOPSO)algorithm was used to determine the optimal location and capacity of three kinds of DG access to DN.It is compared with multi-objective grasshopper optimization algorithm(MOGOA).Based on the IEEE-33 node simulation test example,the average voltage fluctuation is reduced by 0.055 p.u.(5.01%),and the network loss is reduced by 646.65kW(15.92%)after DG is configured by MOPSO algorithm.In addition,MOPSO configuration costs less and has better economics.
作者 王雪同 杨博 Wang Xuetong;Yang Bo(Faculty of Electric Power Engineering,Kunming University of Science and Technology,Kunming 650500,China)
出处 《云南电力技术》 2023年第6期19-22,共4页 Yunnan Electric Power
关键词 分布式电源 多目标粒子群优化算法 配电网 distributed generation(DG) multi-objective particle swarm optimization(MOPSO) distribution network(DN)
  • 相关文献

参考文献5

二级参考文献110

  • 1周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,2001.
  • 2鲁宗相,王彩霞,闵勇,周双喜,吕金祥,王云波.微电网研究综述[J].电力系统自动化,2007,31(19):100-107. 被引量:931
  • 3Vallem M R, Mitra J. Siting and sizing of distributed generation for optimal microgrid architecture[C]//Proceeding of the 37th Annual North American. Illinois, USA: Proceeding of the 37th Armual North American, 2005: 611-616.
  • 4Griffin T, Tomsovic K, Secrest D, et al. Placement of Dispersed Generation System for Reduce Losses[C]// Proceeding of the 33rd Hawaii Intemational Conference on System Sciences. Maui, USA: Proceeding of the 33rd Hawaii International conference on System Sciences, 2000: 1446-1454.
  • 5Wang C S, Hashem-Nehrir M. Analytical approaches for optimal placement of distributed generation sources in power systems[J]. IEEE Trans on Power Systems, 2004, 19(4): 2068-2076.
  • 6Celli G, Pilo F. Optimal distributed generation allocation in mv distribution networks[C]//Proceedings of 22nd IEEE Power Engineering Society International Conference on Power Industry Computer Applications. Sydney, Australia: IEEE, 2001: 81-86.
  • 7刘波,张焰,杨娜.改进的粒子群优化算法在分布式电源选址和定容中的应用[J].电工技术学报,2008,23(2):103-108. 被引量:130
  • 8李涛,马薇,黄晓蓓.基于全寿命周期成本理论的变电设备管理[J].电网技术,2008,32(11):50-53. 被引量:88
  • 9赵国波,刘天琪,李兴源.分布式发电作为备用电源的优化配置[J].电力系统自动化,2009,33(1):85-89. 被引量:28
  • 10黄伟,孙昶辉,吴子平,张建华.含分布式发电系统的微网技术研究综述[J].电网技术,2009,33(9):14-18. 被引量:323

共引文献109

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部