期刊文献+

动态多元状态估计算法在火力发电设备智能预警中的应用 被引量:3

Application of dynamic multivariate state estimation technique in intelligent warning of power equipment
下载PDF
导出
摘要 火力发电设备的健康状态直接影响机组的安全性、可靠性,因此对设备的状态进行实时监测显得尤为重要。基于设备的历史正常运行工况,提出将动态多元状态估计算法用于实时判断火力发电设备的运行状态,分别对某燃气蒸汽联合循环电厂的高压给水泵、某联合循环电厂的燃气轮机及660 MW超超临界燃煤机组的末级过热器建立动态多元状态估计技术(DMSET)智能预警算法。测试结果表明:当设备正常运行时,估计向量与实时观测向量之间的欧氏距离较短,预测精度较高;当设备异常时,估计向量与实时观测向量之间的欧氏距离显著大于正常状态下的值。研究表明,所建立的DMSET智能预警算法能敏锐捕捉到设备的异常信息。 The health status of power equipment directly affects the safety and reliability of the unit.It is crucial to real-time monitor the equipment status.Based on the normal historical data,the application of dynamic multivariate state estimation technique(DMSET)to real-time operation status judgement of power equipment was proposed.The DMSET-based intelligent warning algorithm of high-pressure feedwater pump in an integrated gas-steam combined cycle power plant,9E gas turbine system,and final superheater in a 660 MW ultra-supercritical coal-fired unit was developed.Result show that when the equipment run normally,the Euclidean distance between estimator and observation vector was very small.However,the Euclidean distance between estimator and observation vector for abnormal equipment was larger than that for normal one.
作者 齐云龙 唐作兴 王晓立 潘海禄 QI YunLong;TANG Zuoxing;WANG Xiaoli;PAN Hailu(Nanjing SCIYON Wisdom Technology Group Co.,Ltd.,Nanjing 211102,China;Dongguan Zhongdian Second Thermal Power Co.,Ltd.,Dongguan 523000,China)
出处 《能源研究与信息》 CAS 2023年第4期232-236,共5页 Energy Research and Information
关键词 火力发电设备 智能预警 动态多元状态估计技术(DMSET) 欧氏距离 估计向量 power equipment intelligent warning dynamic multivariate state estimation technique Euclidean distance estimator
  • 相关文献

参考文献4

二级参考文献33

  • 1Gross K C, Singer R M, Wegerich S W, et al. Application of a model-based fault detection system to nuelear plant signals [A]. ISAP[C]. Seoul, Korean, 1997: 66-70.
  • 2Stephan W Wegerich. Similarity based modeling of time synchronous averaged vibration signals for machinery health monitoring [A ]. 2004 IEEE Aerospace Conference Proceedings [C]. 2004 : 3 654- 3 662.
  • 3Herzog J P, Wegerich S W, Gross K C. MSET modeling of crystal river-3 venturi flow meters [A]. ASMA/JSME/SFEN 6th International Conference of Nuclear Engineering (ICONE6)[C]. San Diego, CA, May, 1998.
  • 4Christopher L Black, Robert E Uhrig, Hines J Wesldy. System modeling and instrument calibration verification with a nonlinear state estimation technique [A]. Proceedings of the Maintenance and Reliability Conference[C]. Knoxville, TN, May, 1998.
  • 5Chenggang Yu, Bingjing Su. A non-parametric sequential rank-sum probability ratio test method for binary hypothesis testing[J]. Signal Processing, 2004, (84):1 267-1 272.
  • 6Schoonewelle H,Hagen T H J J van der, Hoogenboom J E. Theoretical and numerical investigations into the SPRT method for anomaly detection [J]. Ann. Nuclear Energy,1995, 22(11) : 731-742.
  • 7Hollander M, Wolfe D A. Nonparametric Statistical Methods [M]. New York, Wiley, 1999.
  • 8黄远灿,博士学位论文,1995年
  • 9赵新民,IEEE Annual Conference on Instrument and Measurement,1994年,167页
  • 10周东华,控制系统的故障检测与诊断技术,1994年

共引文献45

同被引文献8

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部