摘要
研究了齐次边界条件下一维粘性带有反应项的可压缩微极实际气体模型解的大时间行为.假定任意初始值(密度不含真空),利用能量估计和各种精细的插值不等式证明密度函数和温度函数的一致上下界,进而证明了解的整体存在性和指数稳定性.
The large-time behavior of solutions to the one-dimensional compressible viscous and reactive micropolar real gas model with homogeneous boundary conditions is studied.Based on the assumption that any initial value(mass density without vacuum),the uniform upper and lower bounds of the density and the temperature function are proved by using energy estimate method and delicate interpolation inequality,and then the global existence and exponential stability of solutions are obtained.
作者
王玉
黄兰
WANG Yu;HUANG Lan(School of Mathematics and Statistics,North China University of Water Resources and Electric Power,Zhengzhou 450046,China)
出处
《高师理科学刊》
2023年第12期1-8,共8页
Journal of Science of Teachers'College and University
基金
国家自然科学基金项目(11501199)。