摘要
The consumption of cut roses(Rosa hybrida)has always ranked first in the world.However,it is vulnerable to rapid petal and leaf wilting due to leaf stomatal water loss,which seriously affects its ornamental quality and economic value.Stomatal movement,a key in plant physiological processes,is influenced by potassium and nitrate.Advancing comprehension of its physiological and molecular mechanism holds promise for preserving the freshness of cut roses.This study observed the impacts of different concentrations of KNO_(3) vase treatments on stomatal opening and water loss in cut rose‘Carola’leaves,as well as their transcriptional responses to KNO_(3).Water loss rates were influenced by KNO_(3) concentrations,with the 25 and 75 mmol/L treatments exhibiting the highest water loss rates.The stomatal aperture reached its widest value when treated with 75 mmol/L KNO_(3).Transcriptional sequencing analysis was performed to identify differentially expressed genes(DEGs)of which 5456 were up-regulated,and 6607 were down-regulated associated with photosynthesis,starch and sucrose metabolism,metabolic pathways,plant-pathogen interaction,plant hormone signal transduction,and related pathways.246 DEGs were selected related to response to KNO_(3) treatment,of which gene ontology(GO)enrichment were nitrate and terpenoid metabolism,ion transport,and response to stimuli.Further heatmap analysis revealed that several genes related to nitrate transport a metabolism,K+transport,vacuoles,and aquaporin were in close association with the response to KNO_(3) treatment.Weighted gene co-expression network analysis(WGCNA)revealed that hub genes,including LAX2,TSJT1,and SCPL34 were identified in turquoise,black,and darkgreen module.Transcription factors such as NAC021,CDF3,ERF053,ETR2,and ARF6 exhibited regulatory roles in the response to KNO_(3) treatment under light conditions.These findings provide valuable insights into the physiological and molecular mechanisms underlying the response of cut rose leaves to KNO_(3) treatment.
基金
supported by the National Natural Science Foundation of China (Nos.32002069 and 31972439)
the Basic and Applied Research Project of Guangdong Province (2020A1515110961).