期刊文献+

非线性啁啾光纤光栅的色散设计

Dispersion Design of Nonlinear Chirped Fiber Bragg Grating
下载PDF
导出
摘要 针对光纤激光中的高阶色散失配问题,基于传统光脉冲群延迟原理,提出了一种非线性啁啾光纤光栅的色散分析数学模型,推导了布拉格反射波长与色散参量及色散斜率的数值关系。同时,利用该模型研制了两款用于1μm波段超快光纤激光的非线性啁啾光纤光栅,可将入射脉冲宽度分别展宽至150 ps或1 ns以上,并通过光谱干涉法获得了两款光纤光栅的色散曲线。研究结果表明,两款光纤光栅的色散参量实测值分别为-10.3 ps/nm和-107 ps/nm,色散斜率实测值分别为-0.013 ps/nm2和-0.087 ps/nm^(2),与设计参数具有良好的一致性。这可为啁啾光纤光栅的设计分析和生产测试提供新的解决思路和参考依据。 In ultra-high-speed large-capacity optical fiber communications and high-power ultra-fast fiber laser systems,chirped fiber gratings are widely used to compensate and manage dispersion.The dispersion coefficient matching degree directly determines the output quality and application range of the optical pulse signal.Compared with other dispersion compensation technologies,the fiber grating preparation process is simple,has good repeatability,and can be flexibly designed according to actual needs,which has great advantages.However,previous fiber grating dispersion analysis usually only considers the influence of second-order linear dispersion and ignores issues such as pulse distortion caused by high-order nonlinear dispersion mismatch,resulting in unsatisfactory actual use results.Different from the traditional coupling mode theory and transmission matrix analysis method,this paper establishes a new set of dispersion analysis mathematical models for nonlinear chirped fiber grating based on the group dispersion delay principle of optical fiber.The numerical relationship between the Bragg reflection wavelength,the dispersion parameter and the dispersion slope is deduced,which greatly reduces the complexity of the previous calculation process and has strong practicality.In practical application scenarios,as long as the specific dispersion parameters that need to be compensated in the fiber laser system are understood,this numerical relationship can be used to calculate the corresponding chirped fiber grating period distribution,thereby achieving the best system output.Based on this mathematical model and the current common femtosecond fiber laser product specifications on the market,we used UV scanning exposure technology combined with the phase mask method to design and prepare two nonlinear chirped fibers for high-power femtosecond fiber laser pulse broadening.The grating can respectively stecher the incident seed pulse in the 1030 nm band to more than 150 ps or 1 ns,while meeting the third-order dispersion matching requirements in the optical system.In addition,based on the classic Michelson interference principle,we built a set of spectral interference dispersion measurement devices and conducted actual dispersion tests on the two nonlinear chirped fiber gratings we produced.Compared with other measurement methods,this device has simple principle,low cost,high measurement accuracy,wide range and strong practicability.It is very suitable for dispersion measurement of special optical fibers such as fiber gratings and photonic crystal fibers.Experimental results show that the reflection bandwidths of the two nonlinear chirped fiber gratings have reached 17 nm and 11 nm respectively,the dispersion parameters are−10.3 ps/nm and−107 ps/nm respectively,the dispersion slopes are−0.013 ps/nm^(2) and−0.087 ps/nm^(2) respectively,and the reflectivity reaches more than 60%,which basically meets the requirements of practical applications.Taking into account the processing accuracy of fiber gratings and phase masks,as well as the systematic errors introduced by the dispersion measurement device and the approximation of theoretical calculations,the experimental results are basically consistent with the design parameters,proving the correctness and feasibility of this mathematical model.The research results can provide new solutions and references for the design,analysis and production testing of nonlinear chirped fiber gratings.It is foreseeable that the model established can be extended to chirped volume gratings and other composite gratings with the same structure.
作者 黄杭东 刘家兴 王健强 许义 吉贵军 HUANG Hangdong;LIU Jiaxing;WANG Jianqiang;XU Yi;JI Guijun(School of Precision Instruments and Optoelectronics Engineering,Tianjin University,Tianjin 300072,China;Advanced Fiber Resources(Zhuhai),Ltd.,Zhuhai 519080,China)
出处 《光子学报》 EI CAS CSCD 北大核心 2023年第12期81-88,共8页 Acta Photonica Sinica
基金 广东省“珠江人才计划”引进领军人才项目(No.2016LJ06D531)。
关键词 光纤光栅 色散 色散测量 超快光学 非线性 Fiber Bragg grating Dispersion Dispersion measurement Ultrafast optics Nonlinear
  • 相关文献

参考文献11

二级参考文献54

  • 1何飞,程亚.飞秒激光微加工:激光精密加工领域的新前沿[J].中国激光,2007,34(5):595-622. 被引量:92
  • 2Agrawal G P 胡国绛等(译).非线性光纤光学[M].天津:天津大学出版社,1992..
  • 3Jian S S,Sci China E,1999年,42卷,2期,165页
  • 4Feng K M,Optical Fiber Communication Conference 1998 TuM3 San Jose California February 27 1998 Washington DC,1998年,72页
  • 5Li S P,IEEE Photon Technol Lett,1998年,10卷,6期,799页
  • 6胡国绛(译),非线性光纤光学,1992年
  • 7Kazunori M,Ryuichi S,Takeshi Y et al 2000 26th European Conference on Optical Communication (Berlin:VDE VERLAG Offenbach)p95.
  • 8Ning T G,Pei L,Tan Z W et al 2003 SPIE 5279 135.
  • 9Cameron J,Chen L,Bao X Y 2000 IEEE Phot.Tech.Lett.12 47.
  • 10Dong X Y,Ngo N Q,Shum P et al 2004 IEEEPhot.Tech.Lett.16 846.

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部