期刊文献+

基于区域融合的小目标图像盲复原方法

Blind Restoration Method of Small Target Image Based on Region Fusion
下载PDF
导出
摘要 针对高超声速飞行器的复杂光学成像条件下出现的图像模糊与噪声问题,提出一种基于区域融合估计点扩散函数的小目标图像盲复原方法,从目标区域提取和区域融合两个方面降低小目标图像点扩散函数估计误差。首先利用边界延拓解决目标与边界的重叠问题,然后使用多区域加权融合结合灰度匹配的方法,提高点扩散函数的估计准确性。采用仿真数据和实际图像验证所提出方法的有效性。结果表明:该方法可以有效抑制背景噪声,集中目标的能量分布,改善小目标的清晰度和显著性。本研究为高超声速飞行器的小目标识别与精确打击奠定了基础。 This paper has proposed a blind image restoration method using region fusion for estimating the point spread function to address the blur and noise in complex optical imaging conditions of hypersonic vehicles.Extracting the target region and fusing multiple regions can reduce the estimation error of the point spread function of small target images.Firstly,the boundary extension was utilized to resolve the overlap between the target and image boundary.Then,the estimation accuracy of the point spread function was optimized using multi-region weighted fusion and grayscale matching.After that,the effectiveness of the proposed method has been validated by simulations and real images.The results show that this method can effectively suppress background noise and concentrate the energy distribution of the target,thus improving the sharpness and saliency of small targets.This study provides the foundation for small target recognition and precision strikes of hypersonic vehicles.
作者 冯雨欣 张冬冬 厉小润 FENG Yuxin;ZHANG Dongdong;LI Xiaorun(College of Electrical Engineering,Zhejiang University,Hangzhou 310027,Zhejiang,China;Shanghai Academy of Spaceflight Technology,Shanghai 201109,China)
出处 《空天防御》 2023年第4期64-73,共10页 Air & Space Defense
基金 国家自然科学基金(62171404)。
关键词 小目标图像 图像复原 气动光学效应 形态学去噪 点扩散函数 区域融合 small target image image restoration aero-optical effect morphological denoising point spread function region fusion
  • 相关文献

参考文献6

二级参考文献40

  • 1洪汉玉,张天序,余国亮.基于Poisson模型的湍流退化图像多帧迭代复原算法[J].宇航学报,2004,25(6):649-654. 被引量:7
  • 2洪汉玉,张天序,余国亮.航天湍流退化图像的极大似然估计规整化复原算法[J].红外与毫米波学报,2005,24(2):130-134. 被引量:24
  • 3姜文汉.自适应光学技术[J].自然杂志,2006,28(1):7-13. 被引量:80
  • 4何成剑,洪汉玉,张天序,易新建.基于双重规整化的气动退化图像盲复原算法[J].红外与激光工程,2007,36(2):236-239. 被引量:5
  • 5Sarder P,Nehorai A.Deconvolution methods for 3-D fluorescence microscopy images[J].IEEE on Signal Processing Magazine,2006,23(3):32-45.
  • 6Zeng T,Li X,Ng M.Alternating minimization method for total variation based wavelet shrinkage model[J].Commun Comput Phys,2010,8(5):976-994.
  • 7Li W,Li Q,Gong W,et al.Total variation blind deconvolution employing split Bregman,iteration[J].Journal of Visual Communication and Image Representation,2012,23(3):409-417.
  • 8Rudin L I,Osher S,Fatemi E.Nonlinear total variation based noise removal algorithms[J].Physica D:Nonlinear Phenomena,1992,60(1C4):259-268.
  • 9Dey N,Blanc-Feraud L,Zimmer C,et al.Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution[J].Microscopy Research and Technique,2006,69(4):260-266.
  • 10Richardson W H.Bayesian-based iterative method of image restoration[J].Journal of the Optical Society of America,1972,62(1):55-59.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部