摘要
为提升制造商对作业外包、生产和配送的一体化决策水平,关注可外包作业单机分批生产与配送联合调度问题。基于外包总成本预算受限、作业尺寸各异等条件,为该问题建立最小化运营总成本的0-1规划模型,设计出改进型遗传算法。以某陶瓷企业中的外包-生产-配送联合调度任务为例,对比分析该遗传算法与CPLEX软件的求解表现,发现该遗传算法所得解的质量达到或优于在限定1 h时间下CPLEX所得解的质量。利用该遗传算法通过计算机仿真对实例中外包总成本容许率、分时单位电价和配送车型进行灵敏度研究。结果显示,陶瓷企业在用电高峰期安排烧制时应确保外包总成本容许率不低于0.75;在外包总成本预算高度紧张时通过错峰安排烧制,合理选择配送车型,使运营总成本分别下降29.17%和12.15%。
To improve the integrated decision-making level of manufacturers for job outsourcing,production and distribution,an integrated outsourcing-production-distribution scheduling problem(IOPDSP)for a single batch processing machine is considered.A 0-1 programming model is established to minimize the total operating cost based on the budget constraint of total outsourcing cost and non-identical job sizes.An improved genetic algorithm(IGA)is designed for solving this problem.A real-world IOPDSP instance in a ceramic company is applied to compare the solution performance of IGA and CPLEX software.It is found that the solution quality of the designed IGA is not worse than that of CPLEX within the limited time of one hour.Through IGA,a sensitivity analysis is made by computer simulations on the tolerance rate of total outsourcing cost,unit time-of-use electricity prices and delivery vehicle types in the above instance.Results show that ceramic companies should ensure that the tolerance rate of total outsourcing cost is not less than 0.75 when arranging firing during peak electricity consumption periods;when the ceramic company is on a highly tight budget for total outsourcing cost,the total operating cost can be reduced by 29.17%and 12.15%via planning the firing of ceramic bodies during off-peak periods of electricity consumption and appropriate selection of vehicle types,respectively.
作者
耿建一
刘乐
GENG Jianyi;LIU Le(Business School,University of Jinan,Jinan 250002,China)
出处
《工业工程》
北大核心
2023年第6期109-118,共10页
Industrial Engineering Journal
基金
国家自然科学基金资助项目(71501083)
山东省自然科学基金资助项目(ZR2020MG007)
中国博士后科学基金面上资助项目(2019M662296)
青岛市博士后应用研究资助项目(2019023)
济南大学社科类校级资助项目(19YB03)。
关键词
联合调度
外包
批处理机
分批配送
遗传算法
joint scheduling
outsourcing
batch processing machine
batch delivery
genetic algorithm