期刊文献+

基于改进动态窗口法的无人艇编队集结研究 被引量:1

Research on USV formation aggregation based on improved DWA algorithm
下载PDF
导出
摘要 针对传统动态窗口法(DWA)中存在避障中陷入局部最优导致避障时间长、距离采样点不全面导致避障失败、对移动障碍避障效果差等问题,提出了一种适用于无人艇编队集结的改进动态窗口法。首先,通过修改采样窗口的判定规则与评价函数,保留更多的优秀轨迹,优化避障路径并缩短避障时间;其次,通过进一步完善对预轨迹全过程的障碍物距离计算,剔除碰撞轨迹,提高避障成功率;再次,通过引入障碍物运动轨迹预测模型,加强对移动障碍的避障能力。最后,基于该改进算法利用Matlab进行无人艇编队集结仿真实验,结果表明,提出的改进算法能提高无人艇避障能力且能引导无人艇完成编队集结任务。 An improved dynamic window method is presented to solve the problems of traditional DWA,such as long avoidance time due to falling into local optimum during obstacle avoidance,incomplete distance sampling points leading to obstacle avoidance failure,and poor effect on obstacle avoidance.First,by modifying the decision rules and evaluation functions of the sampling window,more excellent tracks are retained,obstacle avoidance paths are optimized,and obstacle avoidance time is shortened.Secondly,by further improving the obstacle distance calculation during the whole pre-trajectory process,the collision trajectory is eliminated and the success rate of obstacle avoidance is improved.Thirdly,the obstacle avoidance ability is enhanced by introducing the obstacle motion track prediction model.Finally,the simulation results of unmanned vehicle formation assembly based on the improved algorithm using Matlab show that the improved algorithm can improve the obstacle avoidance ability of unmanned vehicle and realize the formation assembly of unmanned vehicle.
作者 魏阁安 张建强 WEI Ge-an;ZHANG Jian-qiang(Ordnance Engineering College,Naval University of Engineering,Wuhan 4300331,China)
出处 《舰船科学技术》 北大核心 2023年第23期91-95,99,共6页 Ship Science and Technology
关键词 动态窗口法 无人艇 避障 编队集结 DWA algorithm USV obstacle avoidance formation aggregation
  • 相关文献

参考文献6

二级参考文献29

  • 1Derek J Bennet, Colin R McInnes. Distributed control of multirobot systems using bifurcating potential fields[J].Robotics and Autonomous Systems, 2010,58 (3) : 256 - 264.
  • 2Dorigo M, Maniezzo V, Colomi A. Ant system: optimization by a colony of cooperating agent[ J]. IEEE Transactions on Systems, Man, and Cybernetics, 1996,26( 1 ) :29 - 41.
  • 3Lim Kwee Kim, Ong Yew-Soon,Lim Meng Hiot,et al.Hybrid ant colony algorithms for path planning in sparse graphs E J]. Soft Computing, 2008,12(10) :981 - 994.
  • 4Garcia M A Porta, Montiel Oscar, Casfillo Oscar, et al. Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation[ J]. Applied Soft Computing,2009,9(3) : 1102 - 1110.
  • 5Stutzle T, Hoos H H. Max-min ant system and local search for the travelling salesman problem[ A]. IEEE International Conference on Evolutionary Computation[ C ]. Indianapolis: IEEE Press, 1997.309 - 314.
  • 6Botee H M, Bonabeau E. Evolving ant colony optimization [J].Compex System, 1998,1 (2) : 149 - 159.
  • 7BI Xiao-jun,LUO Guang-xin. The improvement of ant colony algorithm based on the inver-over operator[ A]. IEEE International Conference on Mechatronics and Automation [C ]. Harbin: IEEE Press, 2007.2383 - 2387.
  • 8Kennedy J, Eberhart R C. Particle swarm optimization[ A]. IEEE International Conference on Neural Networks [ C ]. Piscataway, NJ: IEEE Press, 1995.1942 - 1948.
  • 9Asl,L B,Nezhad, V M. Improved particle swarm optimization for dual-channel speech enhancement [A]. International Conference on Signal Acquisition and Processing[C]. Bangalore, India: IEEE Press,2010.13- 17.
  • 10邢焕来,潘炜,邹喜华.一种解决组合优化问题的改进型量子遗传算法[J].电子学报,2007,35(10):1999-2002. 被引量:56

共引文献360

同被引文献17

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部