摘要
针对电力系统经济负荷分配问题的多维、非线性、不可导和多约束等特性,提出了一种基于精英策略改进的蜉蝣优化算法。6个标准测试函数的测试结果显示该算法具备优秀的勘探和开采平衡性,有效避免过早收敛,同时具有高搜索精度和优化鲁棒性等特点。最后选取三个经典案例进行实证研究,并与遗传算法和粒子群优化算法进行对比,结果表明该算法能够有效解决电力系统的经济负荷分配问题,降低总发电成本并减少碳排放。
Considering the multidimensional,nonlinear,non-differentiable,and multi-constraint characteristics of the economic load dispatch problems in power systems,this study proposes an enhanced mayfly optimization algorithm(MA)incorporating an elitist strategy.The test results of six standard test functions demonstrate that the algorithm exhibits excellent exploration and exploitation balance,effectively avoiding premature convergence,and achieves high search accuracy and optimization robustness.Through empirical investigations on three representative case studies and a comparative analysis with genetic algorithm(GA)and particle swarm optimization(PSO),the experimental results validate the effectiveness of the proposed algorithm in addressing the economic load dispatch problems in power systems.The algorithm not only reduces the overall power generation cost but also contributes to the reduction of carbon emissions.
作者
李国成
黄春兴
甘德俊
倪百秀
LI Guocheng;HUANG Chunxing;GAN Dejun;NI Baixiu(Schoolof Finance&Mathematics,West Anhui University,Lu'an 237012,China)
出处
《皖西学院学报》
2023年第6期86-94,共9页
Journal of West Anhui University
基金
安徽省高等学校省级人文社会科学研究重大项目(SK2021ZD0075)
安徽省质量工程教学研究重点项目(2021jyxm1657)
皖西学院校级人文社会科学研究重点项目(WXSK202108)。
关键词
电力系统
经济负荷分配
蜉蝣优化算法
精英策略
power system
economic load dispatch
mayfly optimization algorithm
elitist strategy