摘要
大规模电动汽车无序充电可能引发路网道路堵塞、配电网节点电压偏低等问题,为此分析“车—路—网”的交互特性,构建“车—路—网”协同优化架构。首先,分析电动汽车的行为特性,得到出行需求与充电需求模型;其次,基于Floyd算法提出满足出行需求的最短路径、最优时间与最少能耗线路;然后,基于BP神经网络模型滚动预测节点充电负荷并制定实时电价;最后,基于3种线路与实时电价提出满足充电需求的有序充电引导策略。仿真结果表明,所提引导策略能够降低电动汽车充电成本,同时有效减轻路网道路拥堵及配电网电压偏低的问题。
Disorderly charging of a large number of electric vehicles(EVs)can lead to issues such as traffic congestion on road networks and low voltage at distribution network nodes.To address this,an analysis of the EVs-Traffic-Distribution(ETD)interaction characteristics is conducted,leading to the development of a collaborative optimization framework for ETD.Firstly,travel and charging demand models are derived through analyzing the behavior characteristics of EVs.Next,the shortest path,optimal time,and minimal energy consumption routes that satisfy travel demand are proposed based on the Floyd algorithm.Then,node charging load is forcasted by rolling prediction and real-time electricity prices are formulated,both based on BP neural network models.Finally,an orderly charging guidance strategy is proposed to meet the charging demand based on three types of routes and real-time electricity prices.The simulation results show that the proposed guidance strategy can reduce EVs charging costs while effectively mitigating road congestion and low voltage problems.
作者
姜晓锋
魏巍
王永灿
陈刚
张润涛
廖凯
肖勤
JIANG Xiaofeng;WEI Wei;WANG Yongcan;CHEN Gang;ZHANG Runtao;LIAO Kai;XIAO Qin(State Grid Sichuan Electric Power Research Institute,Chengdu 610041,China;School of Electrical Engineering,Southwest Jiaotong University,Chengdu 611756,China)
出处
《电力科学与技术学报》
CAS
CSCD
北大核心
2023年第5期44-56,共13页
Journal of Electric Power Science And Technology
基金
国家自然科学基金(51977180)
国家重点研发计划(2022YFB2603100)
国家电网四川省电力公司科技项目(52199720003A)
四川省科技计划(重点研发项目)(2023YFG0107)。
关键词
电动汽车
充电引导
协同优化
实时电价
滚动预测
electric vehicles
charging guidance
collaborative optimization
real-time pricing
rolling prediction