摘要
新型位移放大型扭转阻尼器(displacement-amplified torsional damper,DATD)通过铅芯和橡胶的剪切滞回变形实现复合耗能,进一步分析了DATD的工作原理和耗能性能,并对安装有该阻尼器的框架梁柱节点的抗震性能进行了研究。采用ABAQUS软件分别建立DATD、普通现浇节点与安装有DATD的节点的有限元模型,对比DATD有限元分析结果与前期试验结果,二者滞回曲线吻合良好,从而验证该数值模拟方法的有效性。进一步地,对比普通节点与DATD节点在循环荷载作用下的耗能性能,分析DATD对梁柱节点抗震性能的影响。研究结果表明,DATD节点滞回曲线饱满,耗能能力优越,能够延缓节点开裂,保护梁柱节点。
A new type of displacement-amplified torsional damper(DATD)can realize composite energy dissipation by the shear hysteresis deformation of lead core and high damping rubber.This paper further analyzed the working principle and energy dissipation performance of DATD.The seismic performance of frame beam-column joints with this damper was studied.The ABAQUS software was used to establish the finite element model of the DATD,the ordinary cast-in-place joint and the joint equipped with the DATD respectively.By comparing the finite element analysis results of the ordinary cast-in-place joint with the previous test results,the hysteresis curves of the two were in good agreement,thus verifying the effectiveness of the numerical simulation method.Furthermore,the energy dissipation performance of ordinary joints and joints equipped with DATD under cyclic loads were compared,and the influence of DATD on the seismic performance of beam-column joints was analyzed.The research results show that DATD joints have full hysteretic curves and superior energy dissipation capacity,which can significantly delay joint cracking,and protectbeam-column joints.
作者
颜学渊
魏晓颖
刘旭宏
施燊
毛会敏
YAN Xueyuan;WEI Xiaoying;LIU Xuhong;SHI Shen;MAO Huimin(College of Civil Engineering,Fuzhou University,Fuzhou 350116,China;School of Civil Engineering,Fujian University of Technology,Fuzhou 350118,China;School of Ecological Environment and Urban Construction,Fujian University of Technology,Fuzhou 350118,China)
出处
《建筑钢结构进展》
CSCD
北大核心
2023年第12期23-29,共7页
Progress in Steel Building Structures
基金
国家自然科学基金(52278490)
福建省科技计划项目(2022Y3001、2023J01133433)
福州市科技计划项目(2021-Y-082)。
关键词
位移放大型扭转阻尼器
耗能能力
框架梁柱节点
抗震性能
数值模拟
displacement-amplified torsional damper
energy dissipation capacity
frame beam-column joint
seismic performance
numerical simulation