摘要
传统棋盘模型具有模拟计算量小、结构紧凑等优点,但在结构多样性方面存在一定局限,因此提出了有分流棋盘模型,并应用于质量交换网络。该模型中贫富流股匹配更加多样化,适用于复杂的质量交换网络综合问题。此外,分支数是有分流棋盘模型的关键参数,基于此提出了分支数匹配策略,在保证有分流棋盘模型的优化效率下可形成大小合适搜索空间。最后,将本文提出的方法运用于焦炉气脱硫、再生法回收苯酚以及废水脱酚三个算例,所获得的年综合费用分别为409367 USD/a、685114USD/a和348454 USD/a,均低于大部分文献所优化出的结果,其中算例再生法回收苯酚所得到的结果突破了已发表文献的最优解。
The traditional chessboard model has the advantages of small simulation computation and compact structure,but there are some limitations in structural diversity.Therefore,this paper proposes a chessboard model with stream splitting and applies it to the mass exchange network.This model can show more abundant matches of streams and can be applied to more complex mass exchange network problems.The split number of a stream is an important parameter of the chessboard model with stream splitting.Based on this,a split number matching strategy is proposed,which can make the chessboard model form a suitable size of search space under the condition of ensuring optimization efficiency.Finally,the method proposed in this paper is applied to optimize the coke oven gas problem,phenol recovery,and dephenolisation of aqueous wastes.The results were 409367 USD/a,685114 USD/a,and 348454 USD/a,respectively,which are lower than the results optimized in most literature.The case of phenol recovery break through the existing optimal solution in the current literature.
作者
易智康
崔国民
肖媛
段欢欢
黄晓璜
熊思恒
YI Zhikang;CUI Guomin;XIAO Yuan;DUAN Huanhuan;HUANG Xiaohuang;XIONG Siheng(School of Energy and Power Engineering,University of Shanghai for Science and Technology,Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering,Shanghai 200093,China)
出处
《工程热物理学报》
EI
CSCD
北大核心
2023年第12期3361-3371,共11页
Journal of Engineering Thermophysics
基金
国家自然科学基金(No.21978171,51976126)
中国博士后科学基金(No.2020T13043)。
关键词
质量交换网络
棋盘模型
过程系统
模型
优化
mass exchange network
chessboard model
process system
model
optimization