期刊文献+

Insight into coupled Ni-Co dual-metal atom catalysts for efficient synergistic electrochemical CO_(2)reduction

下载PDF
导出
摘要 The development of highly active,selective,and stable electrocatalysts can facilitate the effective implementation of electrocatalytic CO_(2)conversion into fuels or chemicals for mitigating the energy crisis and climate problems.Therefore,it is necessary to achieve the goal through reasonable material design based on the actuality of the operational active site at the molecular scale.Inspired by the stimulating synergistic effect of coupled heteronuclear metal atoms,a novel Ni-Co atomic pairs configuration(denoted as NiN_(3)?CoN_(3)-NC)active site was theoretically screened out for improving electrochemical CO_(2)reduction reaction(CO_(2)RR).The structure of NiN_(3)?CoN_(3)-NC was finely regulated by adjusting Zn content in the precursors Zn/Co/Ni-zeolite imidazolate frameworks(Zn/Co/Ni-ZIFs)and pyrolysis temperature.The structural features of NiN_(3)?CoN_(3)-NC were systematically confirmed by aberration-corrected HAADF-STEM coupled with 3D atom-overlapping Gaussian-function fitting mapping,XAFS,and XRD.The results of theoretical calculations reveal that the synergistic effect of Ni-Co atomic pairs can effectively promote the*COOH intermediate formation and thus the overall CO_(2)RR kinetic was improved,and also restrained the competitive hydrogen evolution reaction.Due to the attributes of Ni-Co atomic pairs configuration,the developed NiN_(3)?CoN_(3)-NC with superior catalytic activity,selectivity,and durability,with a high turnover frequency of 2265 h^(-1)at-1.1 V(vs.RHE)and maximum Faradaic efficiency of 97.7%for CO production.This work demonstrates the great potential of DACs as highly efficient catalysts for CO_(2)RR,provides a useful strategy to design heteronuclear DACs,exploits the synergistic effect of multiple metal sites to facilitate complex CO_(2)RR catalytic reactions,and inspires more efforts to develop the potential of DACs in various fields.
出处 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期509-517,I0013,共10页 能源化学(英文版)
基金 the support of the Sichuan Science and Technology Program(2023NSFC0098) the Science and Technology Development Fund from Macao SAR(FDCT)(0081/2019/AMJ,0154/2019/A3,006/2022/ALC,and 0111/2022/A2) the Shenzhen-Hong Kong-Macao Science and Technology Research Programme(Type C)(SGDX20210823103803017) the Multi-Year Research Grants(MYRG2022-00026-IAPME)from Research&Development Office at University of Macao the Frontier Project of Chengdu Tianfu New Area Institute(SWUST,2022ZY017)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部