期刊文献+

高噪声下改进卷积神经网络轴承故障诊断

下载PDF
导出
摘要 针对强噪声背景下滚动轴承振动信号特征不平稳,导致诊断算法的泛化性变差,抗噪能力弱,难以实现有效的故障诊断的问题,提出一种改进卷积神经网络滚动轴承故障诊断方法。该方法在深度卷积神经网络的基础上,引入门控循环单元(GRU)解决神经网络中梯度爆炸问题,引入注意力机制(Attention)提高网络自适应能力,降低超参数选择的难度,采用SVM分类器代替深度卷积神经网络的分类层,提高分类的准确度。为了验证所提方法在强噪声环境下的鲁棒性和泛化性,利用西储大学轴承数据集进行验证。实验结果表明,所提算法的分类准确度的最大高于WDCNN算法24.7%,证明了所提方法在高噪声背景下具有较好的抗噪性和泛化性。
出处 《中国设备工程》 2024年第1期181-183,共3页 China Plant Engineering
基金 国家自然科学基金项目(6206303)。
  • 相关文献

参考文献1

二级参考文献11

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部