摘要
基于深度学习算法,针对电力系统故障识别与定位问题展开研究。以卷积神经网络(Convolutional Neural Networks,CNN)为例,阐述了深度学习算法在电力系统故障识别与定位中的应用原理。设计并实现了基于深度学习的电力系统故障识别与定位算法,包括数据集准备和预处理、算法实现、实验设置以及性能评估指标的选择等内容。通过对实验结果的分析和讨论,验证了算法的有效性和准确性。
Based on deep learning algorithm,this paper studies the problem of fault identification and location in power system.Taking Convolutional Neural Networks(CNN)as an example,the application principle of deep learning algorithm in power system fault identification and location is expounded.An algorithm for power system fault identification and location based on deep learning is designed and implemented,including data set preparation and preprocessing,algorithm implementation,experimental setting and performance evaluation index selection.Through the analysis and discussion of the experimental results,the effectiveness and accuracy of the algorithm are verified.
作者
刘昌盼
肖海波
LIU Changpan;XIAO Haibo(State Grid Shandong Electric Power Company Ultra High Voltage Company,Jinan 250000,China)
出处
《通信电源技术》
2023年第21期40-42,共3页
Telecom Power Technology
关键词
深度学习
电力系统
故障识别
定位算法
deep learning
electric power system
fault identification
location algorithm