期刊文献+

基于YOLOv3的绝缘子串爆裂缺陷检测研究

Research on detection method of insulator chain defects based on YOLOv3
下载PDF
导出
摘要 针对绝缘子爆裂缺陷检测对时效性的要求,提出了一种基于YOLOv3的绝缘子缺陷检测模型。该模型针对绝缘子爆裂缺陷检测的要求,在YOLOv3算法的基础上进行改进。为提高模型检测速度,将YOLOv3的主干特征提取网络替换为更轻量的GhostNet网络;为提升模型精度,采用K-means++进行聚类以改进模型的先验框尺寸,并将回归损失函数改进为更能体现检测效果的CIoU损失函数。实验结果表明,该模型的mAP为90.32%,相比原YOLOv3提升了3.65%,能够更高效地识别绝缘子及其爆裂缺陷。 Based on the timeliness requirements of insulator burst defect detection,a YOLOv3-based insulator defect detection model is proposed.The model is improved on the basis of the YOLOv3 algorithm to meet the requirements of insulator burst defect detection.In order to improve the speed of model detection,the backbone feature extraction network of YOLOv3 is replaced with a lighter network which is called GhostNet.At the same time,to improve the accuracy of the model,K-means++is used for clustering to make the prior frame size of the model more accurate,and the regression loss function is improved to a CIoU function that can reflect the detection effect better.The experiment results show that the mAP of the model is 90.32%,which is 3.65%higher than the original YOLOv3,and the model can identify insulators and their bursting defects more efficiently.
作者 张辉 周仿荣 潘浩 高振宇 耿浩 林立 ZHANG Hui;ZHOU Fang-rong;PAN Hao;GAO Zhen-yu;GENG Hao;LIN Li(Joint Laboratory of Power Remote Sensing Technology,Electric Power Research Institute,Yunnan Power Grid Company Ltd,Kunming 650217,China;Computer School,Guangdong University of Technology,Guangzhou 510006,China)
出处 《信息技术》 2023年第12期172-178,共7页 Information Technology
关键词 深度学习 目标检测 YOLOv3 输电线路 绝缘子缺陷 deep learning object detection YOLOv3 transmission line insulator defect
  • 相关文献

参考文献10

二级参考文献101

共引文献186

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部