期刊文献+

基于多尺度跨层特征融合的轻量化小目标检测算法 被引量:3

Lightweight Small Target Detection Algorithm Based on Multi-scaleCross-layer Feature Fusion
下载PDF
导出
摘要 针对现有算法缺乏对小目标检测算法的优化且存在计算资源浪费的问题,提出基于MobileNetV2-SSDLite的轻量化小目标检测算法。首先在骨干网络MobileNetV2中嵌入坐标注意力机制,聚焦图像中感兴趣的区域,提出一种基于PANet的多路径、跨层级的特征交叉融合网络,以改善低级特征图的空间语义信息,增加全局信息的捕获。在路径中部署扩张感受野模块获取更多浅层特征的上下文信息,增强小目标检测能力。在PASCAL VOC2007上对该方法进行定量和定性分析,实验结果表明,相对于基线算法准确度提升了4.5%,且在小目标类别上的检测效果也显著提升,能够适应室内外场景中密集小目标的检测任务,满足轻量化模型对小目标检测的需求。 Aiming at the problem that existing algorithms lack the optimization of small target detection and there is a waste of computing resources,a lightweight small target detection algorithm based on MobileNetV2-SSDLite was proposed.Firstly,coordinate attention mechanism was embedded in the backbone network MobileNetV2 to focus on interesting region in the image.A multi-path and cross-level feature cross-fusion network based on PANet was proposed to improve spatial semantic information of low-level feature map and increase the capture of global information,deploy the expanded receptive field module in the path to obtain more shallow feature context information and enhance the small target detection ability.The quantitative and qualitative analysis of the method was carried out on PASCAL VOC2007,and experimental results showed that method accuracy was improved by 4.5 percentage points in comparison with the baseline algorithm.In addition,the detection effect on small target categories was also significantly improved,which could adapt to detection task of dense small targets in indoor and outdoor scenes,and met the requirements of lightweight model for small target detection.
作者 朱柏松 王燕妮 ZHU Baisong;WANG Yangni(College of Inormation and Control Engineering,Xi'an University of Architecture and Technology,Xi'an 710055,China)
出处 《探测与控制学报》 CSCD 北大核心 2023年第6期77-86,共10页 Journal of Detection & Control
基金 陕西省自然基础研究项目(2020JM-499,2020JQ-684)。
关键词 深度学习 小目标检测 复杂密集场景 特征增强 图像处理 deep learning small target detection complex dense scenes feature enhancement image processing
  • 相关文献

参考文献6

二级参考文献20

共引文献239

同被引文献23

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部