期刊文献+

降低权重冗余的分类算法CFS-CFW研究

A Classification Algorithm CFS-CFW for Reducing Weight Redundancy
下载PDF
导出
摘要 朴素贝叶斯具有强的独立性假设,而特征加权是解决这一问题的方法。CFW算法是一种简单有效的加权算法,但该算法的权重计算公式纳入了特征间冗余性,从而影响为每个特征所赋予的权值,降低了分类精度。针对CFW算法中存在的权重冗余问题,本文提出了CFS-CFW算法。该算法使用特征选择算法CFS有效降低权重冗余性,使得每个特征被赋予更合适的权重。在13个UCI数据集上的实验结果表明,该算法具有更高的分类精度。在UCI的spambase的垃圾邮件分类数据集上,该算法的准确性也更高。 Naive Bayes has a strong independence assumption,and feature weighting is the method to solve this problem.The CFW algorithm is a simple and effective weighting algorithm,but its weight calculation formula incorporates feature redundancy,which affects the weight assigned to each feature and reduces classification accuracy.In response to the weight redundancy problem in the CFW algorithm,this paper proposes the CFS-CFW algorithm.This algorithm uses the feature selection algorithm CFS to effectively reduce weight redundancy,allowing each feature to be assigned more appropriate weights.The experimental results on 13 UCI datasets show that the algorithm has higher classification accuracy.The accuracy of this algorithm is also higher on the spam classification dataset of UCI's spam database.
作者 黄丽媛 何振峰 HUANG Liyuan;HE Zhenfeng(College of Computer and Data Science,Fuzhou University,Fuzhou,China,350108)
出处 《福建电脑》 2024年第1期9-15,共7页 Journal of Fujian Computer
基金 福建省自然科学基金(No.2022J01574)资助。
关键词 特征加权 特征选择 朴素贝叶斯 Feature Weighting Feature Selection Naive Bayes
  • 相关文献

参考文献2

二级参考文献22

  • 1程克非,张聪.基于特征加权的朴素贝叶斯分类器[J].计算机仿真,2006,23(10):92-94. 被引量:40
  • 2叶志伟,郑肇葆,万幼川,虞欣.基于蚁群优化的特征选择新方法[J].武汉大学学报(信息科学版),2007,32(12):1127-1130. 被引量:23
  • 3Jiawei H, Kamber M. Data mining: concepts and techniques. San Francisco, CA. itd: Morgan Kaufmann. 2001, 5.
  • 4Zhang H, Sheng S. Learning weighted naive Bayes with accurate ranking. 2004 Fourth IEEE International Conference on.Data Mining(ICDM'04). IEEE. 2004. 567-570.
  • 5Lin J, Yu J. Weighted naive bayes classification algorithm based on particle swarm optimization. 2011 IEEE 3rd International Conference on Communication Software and Networks (ICCSN). IEEE. 2011. 444--447.
  • 6Hall MA. Correlation-based Feature Selection for Machine Learning[Thesis]. The University of Waikato, 1999.
  • 7Zhou X, Luo K. A weighted naive Bayes algorithm based on the attribute order reduction. Advanced Materials Research, 2013, 718: 2108-2112.
  • 8AJD ~lgzak. Rough set methods for attribute clustering and selection. Applied Artificial Intelligence, 2014, 28(3): 220-242.
  • 9Zhang S, McCuUagh P, Callaghan V. An efficient feature selection method for activity classification. 2014 International Conference on Intelligent Environments (IE). IEEE. 2014. 16--22.
  • 10Kishimoto A, Fukunaga A, Botea A. Evaluation of a simple, scalable, parallel best-first search strategy. Artificial Intelligence, 2013, 195: 222-248.

共引文献144

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部