期刊文献+

深度学习图像合成研究综述 被引量:2

Survey of image composition based on deep learning
原文传递
导出
摘要 图像合成一直是图像处理领域的研究热点,具有广泛的应用前景。从原图中精确提取出前景目标对象并将其与新背景合成,构造尽量接近真实的图像是图像合成的基本目标。为推动基于深度学习的图像合成技术研究与发展,本文论述了当前图像合成任务中面临的主要问题:(1)前景对象适应性问题,包括前景对象相对于背景图像的大小、位置、几何角度等几何一致性问题,以及前后景互相遮挡、前景对象边缘细节模糊的外观一致性问题;(2)视觉和谐问题,包括前后景色彩、对比度、饱和度等不统一的色调一致性问题,及前景对象丢失对应阴影的阴影缺失问题;(3)生境适应性问题,表现为前景对象与背景图像的逻辑合理性。总结了目前为解决不同问题主要使用的深度学习方法,同时对不同问题中的合成图像结果进行质量评估,总结了相应的评价指标,并介绍了为解决不同问题所使用的公开数据集,同时进行了深度学习方法的对比,描述了图像合成技术的主要应用场景,最后分析了基于深度学习的图像合成技术中仍然存在的不足,同时提出可行的研究意见,并对未来图像合成技术发展方向提出展望。 Image composition has always been a research hotspot in the field of image processing and has a wide range of application prospects.This process involves accurately extracting the foreground objects in an image and compositing them with a new background image.However,traditional image compositions methods are often time consuming and labor inten⁃sive.Users not only need to manually complete the accurate extraction and reasonable placement of foreground objects but also need to adjust the lighting conditions,saturation,edge details,shadows,and other information of foreground objects to make the image quality close to that of the real image.With the development of deep learning technology in recent years,image composition technology has attracted increasing applications and has demonstrated its efficiency.To promote the research and development of image composition technology based on deep learning,this paper expounds four main prob⁃lems faced in current image composition tasks.First,the foreground object adaptation problem mainly involves foreground object size adjustment,spatial position placement,blurred edge detail processing of foreground objects,and unreasonable mutual occlusion of foreground and background.The current deep learning methods for solving this problem include appro⁃priate bounding box prediction for foreground objects in background images,spatial transformation networks,foreground object location distribution prediction and adversarial training,image fusion technology,and guided placement based on domain information.Second,the foreground object harmonization problem mainly concerns the non-uniformity in the visual information,such as illumination,color,saturation,and contrast,of the foreground and background images after image composition.The current deep learning methods for solving this problem include the attention-based guidance mechanism,domain-information-based verification and discrimination methods,codecs,context-dependent capabilities of Transform⁃ers,assisting input with high dynamic range(HDR),and borrowing methods,such as style transfer.Third,the fore⁃ground object shadow harmonization problem mainly involves generating shadows of missing foreground objects in com⁃posite images.The current deep learning methods for solving this problem include methods based on image rendering,shadow generation using generative adversarial networks,relying on background ambient lighting assistance,and attentionbased methods and mechanisms.Fourth,the habitat adaptation problem between the foreground object and background mainly focuses on biological information matching,which should be considered when compositing foreground objects and background images.Whether foreground objects,such as animals and plants,can be composited in background images is the first problem that should be considered in image composition tasks.The background image selection of an object cannot deviate from its corresponding habitat information.For instance,seagulls do not appear in the desert,and flowers do not grow from ice and snow.The foreground object adaptation problem can be regarded as the key problem in image composi⁃tion.As long as the foreground objects are correctly and reasonably composited,the subsequent optimization task of the composite image can be performed efficiently.Effectively solving the visual harmonization problem of foreground objects can further improve the authenticity of composite images from the perspective of users.The most important problem to be considered is the adaptation of the foreground and background habitats.Objects and background images cannot be chosen arbitrarily but need to satisfy the logical relationship of reality,that is,to satisfy habitat adaptation,which can be regarded as the primary task in an image composition task.If the habitat information does not fit,then the foreground object and background scenes lose their logical authenticity,and all subsequent tasks fail to make the composite image realistic.This study summarizes the current deep learning methods,publicly available datasets,and evaluation indices for each of the above problems,compares the different deep learning methods,and introduces the application of image synthesis technology.A composite image not only reduces the cost of real data acquisition but also improves the generalization ability of the model.The shortcomings of image composition technology based on deep learning are also analyzed,feasible research sug⁃gestions are put forward,and the future development direction of image synthesis technology is forecasted.
作者 叶国升 王建明 杨自忠 张宇航 崔荣凯 宣帅 Ye Guosheng;Wang Jianming;Yang Zizhong;Zhang Yuhang;Cui Rongkai;Xuan Shuai(School of Mathematics and Computer Science,Dali University,Dali 671003,China;Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D,Dali University,Dali 671000,China)
出处 《中国图象图形学报》 CSCD 北大核心 2023年第12期3670-3698,共29页 Journal of Image and Graphics
基金 国家自然科学基金项目(32001313,32160113) 云南省基础研究专项面上项目(202201AT070006) 云南省博士后科研基金项目(YNBH20057) 云南省地方本科高校基础研究联合专项青年项目(2018FH001-106) 云南省重大科技专项计划项目(202002AA100007) 云南省昆虫生物医药研发重点实验室开放项目(AP2022008)。
关键词 深度学习 图像合成 前景对象适应性 图像和谐化 生境适应性 deep learning image composition foreground object adaptation image harmonization habitat adaptation
  • 相关文献

参考文献6

二级参考文献100

  • 1张海嵩,尹小勤,于金辉.实时绘制3D中国画效果[J].计算机辅助设计与图形学学报,2004,16(11):1485-1489. 被引量:17
  • 2柴秀娟,山世光,卿来云,陈熙霖,高文.基于3D人脸重建的光照、姿态不变人脸识别[J].软件学报,2006,17(3):525-534. 被引量:54
  • 3钱小燕,肖亮,吴慧中.快速风格迁移[J].计算机工程,2006,32(21):15-17. 被引量:15
  • 4Porter T, Duff T. Compositing digital images [ C ] //Proceedingsof the 11th annual conference on Computer graphics and interac-tive techniques. New York, USA:ACM, 1984:253-259.
  • 5Wang J, Cohen M F. Image and video matting : a survey [ J ].Foundations and Trends in Computer Graphics and Vision, 2007,3(2): 97-175.
  • 6Smith A, Blinn J. Blue screen matting [ C ]// Proceedings of268.
  • 7Ruzon M, Tomasi C. Alpha estimation in natural images [ C ] //Proceedings of IEEE CVPR 2000. Washington DC, USA: IEEEComputer Society, 2000:18-25.
  • 8Chuang Y, Curless B, Salesin D, et al. A bayesian approach todigital matting [ C ] //Proceedings of IEEE CVPR 2001. Washing-ton DC, USA : IEEE Computer Society, 2001:264-271.
  • 9Sindeyev M, Konushin V,Vezhnevets V. Improvements ofbayesian matting [ C ] //Proceedings of Graphicon 2007. Moscow,Russia: Moscow State Lomonosov University, 2007:88-95.
  • 10Berman A, Vlahos P, Dadourian A. Comprehensive method forremoving from an image the background surrounding a selectedobject. US, 6135345[P]. 2000-10-17.

共引文献73

同被引文献16

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部