期刊文献+

基于注意力特征融合网络的手指静脉图像质量评价方法

Finger vein image quality evaluation method based on attention feature fusion network
原文传递
导出
摘要 为充分挖掘质量特征以提高手指静脉图像质量评价的性能,提出一种基于注意力特征融合的深度可分离卷积网络,将其用于手指静脉图像质量评价。该方法主要包括静脉纹路提取、深度质量特征提取、注意力特征融合和图像质量类别预测等四个步骤。使用深度可分离卷积代替传统卷积,减少网络参数,使网络轻量化。使用注意力特征融合代替特征串联融合,从手指静脉灰度图像和手指静脉纹路图像中挖掘更具区分性的质量特征。考虑到目前没有公开手指静脉图像质量数据库,手工标注山东大学手指静脉公开库中图像的质量标记。试验结果表明,本研究提出的方法在手工标注数据库上的图像质量分类正确率为89.67%,图像质量评价性能优于现有手指静脉图像质量评价方法。 In order to enhance image quality feature and further improve the accuracy of finger vein image quality evaluation,a deep separable convolution network based on attention feature fusion was proposed and used for finger vein image quality evaluation.Four steps including vein pattern extraction,deep quality feature extraction,attention feature fusion,and quality label prediction were involved in the proposed method.A deep separable convolution,not traditional convolution,was used for reducing network parameters and making the network lightweight.At the same time,attention feature fusion instead of feature concatenation was used to mine more discriminative quality features from grayscale and vein pattern images.Considering that there was no public finger vein database with quality labels,the quality labels of the images in the public finger vein database from Shandong University were manually annotated.The experimental results showed that the image quality classification rate of the proposed method on the annotated database was 89.76%,which outperformed the state-of-the-art finger vein image quality evaluation methods.
作者 迟云浩 杨璐 郭杰 郝凡昌 聂秀山 CHI Yunhao;YANG Lu;GUO Jie;HAO Fanchang;NIE Xiushan(School of Computer Science and Technology,Shandong Jianzhu University,Jinan 250101,Shandong,China)
出处 《山东大学学报(工学版)》 CSCD 北大核心 2023年第6期56-62,共7页 Journal of Shandong University(Engineering Science)
基金 国家自然科学基金资助项目(62076151) 山东省自然科学基金资助项目(ZR2021JQ26,ZR2022MF272,ZR2021QF119) 山东省泰山学者资助项目(tsqn202211182)。
关键词 手指静脉识别 图像质量评价 卷积神经网络 注意力特征融合 深度可分离卷积 finger vein recognition image quality evaluation convolution neural network attention feature fusion deep separable convolution
  • 相关文献

参考文献2

二级参考文献13

  • 1WANG Z, SHEIKH H R, BOVIK A C. Noreference perceptual quality assessment of JPEG compressed images[C]//Proceedings of IEEE International Conference on Image Processing. New York,USA: IEEE, 2002, 1: 477-480.
  • 2HONG L. Automatic personal identification using fingerprints[D]. Michigan State University, 1998.
  • 3DAUGMAN J. Statistical richness of visual phase information: update on recognizing persons by iris patterns[J]. International Journal Computer Vision, 2001, 45(1): 25-38.
  • 4ZHANG G, SALGANICOFF M. Method of measuring the focus of closeup images of eyes[P]. United States,5953440,1999.
  • 5LI Ma,TAN Tieniu, WANG Yunhong. Personal identification based on iris texture analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(12): 1519-1533.
  • 6Rudolf Maarten Bolle. System and methods for determing the quality of fingerprint images[P].United States patent number US596356(1999).
  • 7王科俊,袁智.基于小波矩融合PCA变换的手指静脉识别[J].模式识别与人工智能,2007,20(5):692-697. 被引量:32
  • 8胡杨庆,童卫青.人脸图像质量评价法[J].现代计算机,2007,13(12):43-45. 被引量:2
  • 9周景超,戴汝为,肖柏华.图像质量评价研究综述[J].计算机科学,2008,35(7):1-4. 被引量:72
  • 10魏政刚,袁杰辉,蔡元龙.图象质量评价方法的历史、现状和未来[J].中国图象图形学报(A辑),1998,3(5):386-389. 被引量:36

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部