期刊文献+

HFD-exacerbated Metabolic Side Effects of Olanzapine Are Suppressed by ER Stress Inhibitor

下载PDF
导出
摘要 Objective Numerous schizophrenic patients are suffering from obesity primarily attributed to antipsychotic medication and poor dietary habits.This study investigated the progressive deterioration of olanzapine-induced metabolic disorders in the presence of a high-fat diet(HFD)and explored the involvement of endoplasmic reticulum(ER)stress.Methods Female Sprague-Dawley rats fed on a standard chow diet or HFD were treated with olanzapine(3 mg/kg/day)and the ER stress inhibitor 4-phenylbutyric acid(4-PBA,1 and 0.5 g/kg/day)for 8 days.Changes in body weight,food intake,and plasma lipids were assessed.Hepatic fat accumulation was evaluated using oil red O staining.Western blotting and immunofluorescence assays were employed to examine the expression of ER stress markers,NOD-like receptor pyrin domain-containing protein 3(NLRP3),and proopiomelanocortin(POMC)in the hypothalamus or liver.Results Compared to olanzapine alone,olanzapine+HFD induced greater weight gain,increased hyperlipidemia,and enhanced hepatic fat accumulation(P<0.05).Co-treatment with 4-PBA exhibited a dose-dependent inhibition of these effects(P<0.05).Further mechanistic investigations revealed that olanzapine alone activated ER stress,upregulated NLRP3 expression in the hypothalamus and liver,and downregulated hypothalamic POMC expression.The HFD exacerbated these effects by 50%–100%.Moreover,co-administration of 4-PBA dose-dependently attenuated the olanzapine+HFD-induced alterations in ER stress,NLRP3,and POMC expression in the hypothalamus and liver(P<0.05).Conclusion HFD worsened olanzapine-induced weight gain and lipid metabolic disorders,possibly through ER stress-POMC and ER stress-NLRP3 signaling.ER stress inhibitors could be effective in preventing olanzapine+HFD-induced metabolic disorders.
出处 《Current Medical Science》 SCIE CAS 2023年第6期1116-1132,共17页 当代医学科学(英文)
基金 the Natural Science Foundation of Hubei Province(No.2021CFB301 and No.2021CFB299) the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(WUT)(No.2022-KF-27).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部