期刊文献+

FDAT:基于AlexNet迁移学习的纺织物疵点分类方法

FDAT:Fabric Defect Classification Model Based on AlexNet Using Transfer Learning
下载PDF
导出
摘要 针对现有的纺织产品疵点分类方法数据集小,网络训练耗时较长以及准确率较低等问题,论文提出了一种使用迁移学习基于ALexNet模型的纺织产品疵点分类算法(Fabric Defect Classification Model based on AlexNet using Transfer Learning,FDAT),首先,针对纺织产品疵点数据集数据量少的问题,通过基于大型数据集训练得到模型训练参数权重,利用迁移学习方法构建基于AlexNet的纺织产品疵点分类方法;其次,对输入纺织产品疵点数据进行特征提取,使用softmax分类器针对特征提取结果进行分类;最后,在TILDA纺织产品疵点数据集上进行了计算机模拟实验,实验结果表明,提出的FDAT模型对比传统小波变换算法,人工神经网络,DenseNet,ResNet以及Xception,可以有效地解决小样本分类问题,提高算法的准确率的同时,缩短网络分类耗时。 For the problems of the existing textile product defect classification methods such as small data sets,long network training time and low accuracy,this paper proposes the fabric defect classification model based on AlexNet using transfer learning(short of FDAT).First of all,for the problem of the small amount of data in the textile product defect data set,the model training parameter weights are obtained through training based on large data sets,and the transfer learning method is used to construct a textile product defect classification method based on AlexNet.Then,perform feature extraction on the input fabric defect data and use the softmax classifier to classify the feature extraction results.Finally,a computer simulation experiment is carried out on the TILDA fabric defect data set.The experimental results show that the proposed FDAT can effectively solve the small sample classification problem and improve the algorithm's performance compared with the traditional wavelet transform algorithm,artificial neural network,DenseNet,ResNet and Xception.It can improve the accuracy of the algorithm and shorten the time-consuming network classification.
作者 冯一凡 师昕 赵雪青 FENG Yifan;SHI Xin;ZHAO Xueqing(School of Computer Science,Xi'an Polytechnic University,Xi'an 710048)
出处 《计算机与数字工程》 2023年第10期2413-2417,共5页 Computer & Digital Engineering
基金 陕西省教育厅自然科学一般专项科学研究计划(编号:21JK0646)资助。
关键词 图像识别 分类 疵点检测 迁移学习 AlexNet image recognition classification defect detection transfer learning AlexNet
  • 相关文献

参考文献6

二级参考文献48

  • 1关劲峤,黄贤金,刘晓磊,刘红明,陈雯.太湖流域印染业企业环境行为分析[J].湖泊科学,2005,17(4):351-355. 被引量:17
  • 2SULAIMAN S N, ISA N A M. Adaptive fuzzy-K-means clustering algorithm for image segmentation [ J ]. IEEE Transactions on Consumer Electronics, 2010,56 (4) : 2661 - 2668.
  • 3BEZDEK JC. Pattern recognition with fuzzy objective function algorithms [ J ]. Plenum Press, New York, 1981.
  • 4SOWMYA B, BHATTACHARYA S. Colour image segmentation using fuzzy clustering techniques [J]. IEEE Indicon 2005 Conference, Chennai, India, 2005, 11 - 13:41 -45.
  • 5CHEN S, ZHANG D Q. Robust image segmentation using FCM with spatial constraints based on new kernel- induced distance metric [ J]. IEEE Trans on System. Man and Cybernetics-Part B, 2004, 34:1907 -1916.
  • 6ZHANG D Q, CHEN S. A novel kernelised fuzzy C-means algorithms with application in medical image segmentation [ J ]. Artificial Intelligence in Medicine, 2004,32:37 - 50.
  • 7CAI W L, CI-IEN S, ZHANG D Q. Fast and robust fuzzy C-means clustering algorithms incorporation local information for image segmentation [J]. Pattern Recognition, 2007,40 : 825 - 838.
  • 8PAL N R, BEZDEK J C. On clustering validity for the fuzzy C-means model [ J ]. IEEE Fuzzy Systems, 1995, 3(3) : 370 -379.
  • 9XIE X L, BENI G A. A validity measure for fuzzy clustering [J]. IEEE PAMI,1991,13 :841 - 847.
  • 10LI Yang, YU Fusheng. A new validity function for fuzzy clustering [ J ]. Computational Intelligence and Natural Computing,2009, ( 1 ) : 462 -465.

共引文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部