摘要
以Ti6Al4V钛合金为研究对象,采用含交互作用的正交试验方法,研究分析了冷却方式(传统切削液、微量润滑MQL和油膜附水滴OoW)、切削转速、进给速度和切削深度四个因素对铣削过程中切削力、表面粗糙度和刀具磨损的影响。结果表明,具有良好润滑性能的MQL技术切削合力比OoW总体更低;采用MQL和传统冷却液的粗糙度接近且优于OoW。冷却方式和进给速度对切削合力的影响程度高于冷却方式与其他切削参数交互作用;冷却方式和切削转速的交互作用对粗糙度的影响程度最高。MQL绿色冷却因良好的润滑效果,相比OoW能更好地抑制后刀面磨损,有望取代传统冷却液进行钛合金的绿色加工。
Titanium alloy as a typical difficult-to-machine material,applying effective cooling and lubrication during processing is a key technology to improve the cutting tool performance.Moreover,the use of“clean cutting”green cooling technology to replace traditional cutting fluid cooling has become an inevitable trend.In this paper,the titanium alloy Ti6Al4V was used as the research object,and the orthogonal test method with interaction was adopted.The study analyzed the influence of four factors of cooling method(traditional cutting fluid,minimal quantity lubrication MQL and oils on water OoW),cutting speed,feed speed and depth of cut on the cutting force,surface roughness and tool wear during milling.The results show that the resultant cutting force under MQL,with good lubrication,is generally lower than that of OoW.The roughness of using MQL is close to that of traditional coolant,and is better than OoW.Compared with the interaction with other processing parameters,the interaction of the cooling method with feed rate is higher.The interaction between cooling method and cutting speed has the highest degree of influence on roughness.Compared with OoW,MQL cooling with good lubrication effect can better inhibit flank wear and is expected to replace traditional coolant for green machining of titanium alloys.
作者
林海生
王成勇
李伟秋
梁赐乐
徐东区
谢奕彬
甄铁城
冯杰
李喆
洪圳
Lin Haisheng;Wang Chengyong;Li Weiqiu;Liang Cile;Xu Dongqu;Xie Yibin;Zhen Tiecheng;Feng Jie;Li Zhe;Hong Zhen(不详;School of Electromechanical Engineering,Guangdong University of Technology,Guangzhou 510006,China)
出处
《工具技术》
北大核心
2023年第12期15-20,共6页
Tool Engineering
基金
国家自然科学基金(52005111)
国家重点研发计划(2019YFB2005400)。
关键词
钛合金
微量润滑
油膜附水滴
切削力
粗糙度
后刀面磨损
titanium alloy
minimal quantity lubrication(MQL)
oils on water(OoW)
cutting force
roughness
flank tool wear