期刊文献+

Empagliflozin ameliorates diabetic cardiomyopathy probably via activating AMPK/PGC-1αand inhibiting the RhoA/ROCK pathway 被引量:2

下载PDF
导出
摘要 BACKGROUND Diabetic cardiomyopathy(DCM)increases the risk of hospitalization for heart failure(HF)and mortality in patients with diabetes mellitus.However,no specific therapy to delay the progression of DCM has been identified.Mitochondrial dysfunction,oxidative stress,inflammation,and calcium handling imbalance play a crucial role in the pathological processes of DCM,ultimately leading to cardiomyocyte apoptosis and cardiac dysfunctions.Empagliflozin,a novel glucoselowering agent,has been confirmed to reduce the risk of hospitalization for HF in diabetic patients.Nevertheless,the molecular mechanisms by which this agent provides cardioprotection remain unclear.AIM To investigate the effects of empagliflozin on high glucose(HG)-induced oxidative stress and cardiomyocyte apoptosis and the underlying molecular mechanism.METHODS Twelve-week-old db/db mice and primary cardiomyocytes from neonatal rats stimulated with HG(30 mmol/L)were separately employed as in vivo and in vitro models.Echocardiography was used to evaluate cardiac function.Flow cytometry and TdT-mediated dUTP-biotin nick end labeling staining were used to assess apoptosis in myocardial cells.Mitochondrial function was assessed by cellular ATP levels and changes in mitochondrial membrane potential.Furthermore,intracellular reactive oxygen species production and superoxide dismutase activity were analyzed.Real-time quantitative PCR was used to analyze Bax and Bcl-2 mRNA expression.Western blot analysis was used to measure the phosphorylation of AMP-activated protein kinase(AMPK)and myosin phosphatase target subunit 1(MYPT1),as well as the peroxisome proliferator-activated receptor-γcoactivator-1α(PGC-1α)and active caspase-3 protein levels.RESULTSIn the in vivo experiment, db/db mice developed DCM. However, the treatment of db/db mice with empagliflozin(10 mg/kg/d) for 8 wk substantially enhanced cardiac function and significantly reduced myocardial apoptosis,accompanied by an increase in the phosphorylation of AMPK and PGC-1α protein levels, as well as a decrease inthe phosphorylation of MYPT1 in the heart. In the in vitro experiment, the findings indicate that treatment ofcardiomyocytes with empagliflozin (10 μM) or fasudil (FA) (a ROCK inhibitor, 100 μM) or overexpression of PGC-1α significantly attenuated HG-induced mitochondrial injury, oxidative stress, and cardiomyocyte apoptosis.However, the above effects were partly reversed by the addition of compound C (CC). In cells exposed to HG,empagliflozin treatment increased the protein levels of p-AMPK and PGC-1α protein while decreasing phosphorylatedMYPT1 levels, and these changes were mitigated by the addition of CC. Adding FA and overexpressingPGC-1α in cells exposed to HG substantially increased PGC-1α protein levels. In addition, no sodium-glucosecotransporter (SGLT)2 protein expression was detected in cardiomyocytes.CONCLUSION Empagliflozin partially achieves anti-oxidative stress and anti-apoptotic effects on cardiomyocytes under HGconditions by activating AMPK/PGC-1α and suppressing of the RhoA/ROCK pathway independent of SGLT2.
出处 《World Journal of Diabetes》 SCIE 2023年第12期1862-1876,共15页 世界糖尿病杂志(英文版)(电子版)
基金 Health Commission of Hebei Province,No.20210196 S&T Program of Hebei,No.22377726D。
  • 相关文献

参考文献3

二级参考文献48

  • 1Aragno M, Mastrocola R, AIIoatti G, Verceilinatto I, Bardini P, Geuna S, et at. Oxidative stress triggers cardiac fibrosis in the heart of diabetic rats. Endocrinology 2008; 149: 380-8.
  • 2Jin D, Takai S, Sugiyama T, Hayashi T, Fukumoto M, Oku H, etal. Long- term angiotensin II blockade may improve not only hyperglycemia but also age-associated cardiac fibrosis. J Pharmacol Sci 2009; 109: 275-84.
  • 3Yamamoto K, Masuyama T, Sakata Y, Nishikawa N, Mano T, Yoshida J, et al. Myocardial stiffness is determined by ventricular fibrosis, but not by compensatory or excessive hypertrophy in hypertensive heart. Cardiovasc Res 2002; 55: 76-82.
  • 4Kai H, Kuwahara F, Tokuda K, Imaizumi T. Diastolic dysfunction in hypertensive hearts: roles of perivascular inflammation and reactive myocardial fibrosis. Hypertens Res 2005; 28: 483-90.
  • 5Rikitake Y, Kim HH, Huang Z, Seto M, Yano K, Asano T, et al. Inhibition of Rho kinase (ROCK) leads to increased cerebral blood flow and stroke protection. Stroke 2005; 36: 2251-7.
  • 6Fukushima M, Nakamuta M, Kohjima M, Kotoh K, Enjoji M, Kobayashi N, et al. Fasudil hydrochloride hydrate, a Rho-kinase (ROCK) inhibitor, suppresses collagen production and enhances collagenase activity in hepatic stellate ceils. Liver Int 2005; 25: 829-38.
  • 7Lin G, Craig GP, Zhang L, Yuen VG, Allard M, McNeill JH, et al. Acute inhibition of Rho-kinase improves cardiac contractile function in streptozotocin-diabetic rats. Cardiovasc Res 2007; 75: 51-8.
  • 8Soliman H, Craig GP, Nagareddy P, Yuen VG, Lin G, Kumar U, et al. Role of inducible nitric oxide synthase in induction of RhoA expression in hearts from diabetic rats. Cardiovasc Res 2008; 79: 322-30.
  • 9Kobayashi N, Horinaka S, Mita S, Nakano S, Honda T, Yoshida K, et al. Critical role of Rho-kinase pathway for cardiac performance and remodeling in failing rat hearts. Cardiovasc Res 2002; 55: 757-67.
  • 10Chen X, Tian Y, Yao L, Zhang J, Liu Y. Hypoxia stimulates proliferation of rat neural stem cells with influence on the expression of cyclin D1 and c-Jun N-terminal protein kinase signaling pathway in vitro. Neuroscience 2010; 165: 705-14.

共引文献40

同被引文献3

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部