摘要
基于浅层模型的知识图谱表示学习的目标是学习图上所有的实体和关系的嵌入表示向量,然而浅层模型难以学习到更具表达力的特征。浅层模型采用的嵌入表示矩阵使得训练过程需要消耗大量的计算资源,难以在现实中的大型知识图谱上进行训练。大型知识图谱表示学习模型——ConvPiece,基于锚节点和邻居节点及关系采样策略为知识图谱上的每个节点预计算子图表示,利用二维卷积和Transformer为每个节点聚合采样子图特征得到节点的表示向量,最终输入解码器计算得分并训练。在两个大型知识图谱数据集FB15k-237和WN18RR上的链路预测实验显示,ConvPiece在只有大模型十分之一参数量的情况下分别保持着88%和92%的性能,且分别高出参考模型9%和2%。
The goal of knowledge graph representation learning based on shallow models is to learn the embedded vectors of all entities and relations on the graph.However,shallow models can hardly learn more expressive features,and the embedded matrix usually consumes vast quantities of resources,resulting in the impossibility of training models on large⁃scale knowledge graphs.Therefore,this paper proposes ConvPiece,a representation learning model for large⁃scale knowledge graphs.Based on the sampling strategy of anchor nodes,neighbor nodes and edges,each node on the knowledge graph is represented by the pre⁃computed subgraph.2D convolution and Transformer are used to aggregate the sampled subgraph features of each node to obtain the node representation vector.The final decoder calculates the score for training the model.Link prediction experiments on two large⁃scale knowledge graph datasets,FB15k⁃237 and WN18RR,show that ConvPiece can maintain 88%and 92%performance with only one⁃tenth of the number of parameters that the larger model requires and outperforms the reference models by 9%and 2%.
作者
陈云芳
茆昊天
徐晓瑀
杜承俊
陈杰
张伟
CHEN Yunfang;MAO Haotian;XU Xiaoyu;DU Chengjun;CHEN Jie;ZHANG Wei(School of Computer Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China;Jiangsu Lianchuang Software Research Institute,Nanjing 210000,China;Department of Information and Security,Yancheng Polytechnic College,Yancheng 224005,China)
出处
《南京邮电大学学报(自然科学版)》
北大核心
2023年第6期60-69,共10页
Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金
国家重点研发计划(2019YFB2101701)
江苏省高职院校教师专业带头人高端研修项目(2022GRFX065)资助项目。
关键词
知识图谱
表示学习
二维卷积
链路预测
knowledge graph
representation learning
2D convolution
link prediction