摘要
为了提高哈里斯鹰算法的寻优性能,提出KmHHO算法。首先,将所有种群看作一个聚类,用Kmeans算法计算聚类的质心,再用质心代替算法中的均值。然后,为了控制算法的探索和开发阶段,用指数递减的猎物逃逸能量,代替原算法中线性递减的猎物逃逸能量。最后,通过在23个benchmark函数上5个算法寻优性能的对比,验证KmHHO的改进效果,并利用Wilcoxon秩和检验,分析KmHHO与其他4个算法的差异性。实验结果表明,在23个benchmark函数中,KmHHO能够在14个benchmark函数上取得最优值,整体性能高于GWO、HHO和AO,但与DAHHO相当。
To promote optimization performance of Harris hawks optimization algorithm,KmHHO algorithm is proposed.Firstly,all populations as a cluster,the cluster centroid is calculated with Kmeans of Matlab,mean of HHO is replaced by cluster centroid.Then,to control the segments of exploration and development,linearly decreasing escape energy of prey is replaced with exponentially decreasing escape energy of prey.Finally,searching performance of five algorithms is compared on 23 benchmark functions,the improved effect of KmHHO is verified and Wilcoxon rank sum test is utilized to analyze the difference of KmHHO with other four optimization algorithms.The experimental results show that among the 23 benchmarks,KmHHO can achieve the optimal value on 14 benchmark functions,and its overall performance is higher than GWO,HHO and AO,but it’s equivalent to DAHHO.
作者
白晓波
江梦茜
王铁山
邵景峰
李勃
BAI Xiao-bo;JIANG Meng-xi;WANG Tie-shan;SHAO Jing-feng;LI Bo(School of Management,Xi’an Polytechnic University,Xi’an 710048,China;Textile Development Research Institute of One Belt and One Road,Xi’an 710048,China;School of Advanced Manufacturing,Fuzhou University,Fuzhou 350003,China)
出处
《计算机与现代化》
2023年第12期30-35,共6页
Computer and Modernization
基金
国家自然科学基金资助项目(71802155)
陕西省教育厅智库项目(20JT027)
咸阳市重点研发计划项目(S2021ZDYFGY-0715)。
关键词
哈里斯鹰算法
Kmeans
指数递减
秩和检验
群体智能寻优算法
Harris hawks optimization
Kmeans
exponentially decreasing
ranksumtest
swarm intelligence optimization algorithm