期刊文献+

聚类质心与指数递减方法改进的哈里斯鹰算法 被引量:1

Improved Harris Hawks Optimization Algorithm Based on Cluster Centroid and Exponential Decline Method
下载PDF
导出
摘要 为了提高哈里斯鹰算法的寻优性能,提出KmHHO算法。首先,将所有种群看作一个聚类,用Kmeans算法计算聚类的质心,再用质心代替算法中的均值。然后,为了控制算法的探索和开发阶段,用指数递减的猎物逃逸能量,代替原算法中线性递减的猎物逃逸能量。最后,通过在23个benchmark函数上5个算法寻优性能的对比,验证KmHHO的改进效果,并利用Wilcoxon秩和检验,分析KmHHO与其他4个算法的差异性。实验结果表明,在23个benchmark函数中,KmHHO能够在14个benchmark函数上取得最优值,整体性能高于GWO、HHO和AO,但与DAHHO相当。 To promote optimization performance of Harris hawks optimization algorithm,KmHHO algorithm is proposed.Firstly,all populations as a cluster,the cluster centroid is calculated with Kmeans of Matlab,mean of HHO is replaced by cluster centroid.Then,to control the segments of exploration and development,linearly decreasing escape energy of prey is replaced with exponentially decreasing escape energy of prey.Finally,searching performance of five algorithms is compared on 23 benchmark functions,the improved effect of KmHHO is verified and Wilcoxon rank sum test is utilized to analyze the difference of KmHHO with other four optimization algorithms.The experimental results show that among the 23 benchmarks,KmHHO can achieve the optimal value on 14 benchmark functions,and its overall performance is higher than GWO,HHO and AO,but it’s equivalent to DAHHO.
作者 白晓波 江梦茜 王铁山 邵景峰 李勃 BAI Xiao-bo;JIANG Meng-xi;WANG Tie-shan;SHAO Jing-feng;LI Bo(School of Management,Xi’an Polytechnic University,Xi’an 710048,China;Textile Development Research Institute of One Belt and One Road,Xi’an 710048,China;School of Advanced Manufacturing,Fuzhou University,Fuzhou 350003,China)
出处 《计算机与现代化》 2023年第12期30-35,共6页 Computer and Modernization
基金 国家自然科学基金资助项目(71802155) 陕西省教育厅智库项目(20JT027) 咸阳市重点研发计划项目(S2021ZDYFGY-0715)。
关键词 哈里斯鹰算法 Kmeans 指数递减 秩和检验 群体智能寻优算法 Harris hawks optimization Kmeans exponentially decreasing ranksumtest swarm intelligence optimization algorithm
  • 相关文献

参考文献9

二级参考文献65

  • 1刘小龙.基于统计指导的飞蛾扑火算法求解大规模优化问题[J].控制与决策,2020,35(4):901-908. 被引量:14
  • 2黄清宝,李俊兴,宋春宁,徐辰华,林小峰.基于余弦控制因子和多项式变异的鲸鱼优化算法[J].控制与决策,2020,35(3):559-568. 被引量:33
  • 3Kennedy J, Eberhart R. Particle swarm optimization[A]. International Conference on Neural Networks[C]. Perth, Australia: IEEE, 1995. 1942-1948.
  • 4Elegbede C. Structural reliability assessment based on particles swarm optimization [ J ]. Structural Safety,2005, 27 (10):171-186.
  • 5Robinson J, Rahmat-Samii Y. Particle swarm optimization in electromagnetics[J]. IEEE Transactions on Antennas and Propagation, 2004, 52 (2). 397-406.
  • 6Salman A, Ahmad I, A1-Madani S. Particle swarm optimization for task assignment problem[J]. Microprocessors and Microsystems, 2002, 26 (8): 363-371.
  • 7Shi Y, Eberhart R. Empirical study of particle swarm optimization [A]. International Conference on Evolutionary Computation [C]. Washington, USA: IEEE,1999. 1945-1950.
  • 8Shi Y, Eberhart R. Fuzzy adaptive particle swarm optimization [A]. The IEEE Congress on Evolutionary Computation [C]. San Francisco, USA.. IEEE, 2001.101-106.
  • 9Eberhart R, Shi Y. Tracking and optimizing dynamicsystems with particle swarms [A]. The IEEE Congress on Evolutionary Computation [C]. San Francisco, USA: IEEE, 2001. 94-100.
  • 10骆剑平,李霞,陈泯融.基于改进混合蛙跳算法的CVRP求解[J].电子与信息学报,2011,33(2):429-434. 被引量:31

共引文献378

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部