期刊文献+

基于联合特征分布匹配的跨项目缺陷预测

Cross-project defect prediction based on joint feature distribution matching
下载PDF
导出
摘要 为解决跨项目软件缺陷预测研究中存在的特征不完备和分类边界模糊问题,提出一种基于联合特征的双编码器分布匹配方法(DeDM-JF)。利用卷积神经网络提取代码中与缺陷有关的结构语义特征,将其与人为选取的Handcrafted特征结合,形成联合特征;在此基础上,构建包含分布差异匹配层的双自编码器,学习跨项目全局和局部可迁移特征用于训练缺陷预测模型。面向软件缺陷数据仓库中的798对跨项目缺陷预测任务开展实验,与相关的跨项目缺陷预测方法比较,DeDM-JF方法预测的F-measure和MCC指标有明显提升。 To solve the problems of feature incompleteness and classification boundary ambiguity in cross-project software defect prediction,a joint feature-based dual-encoder distribution matching method(DeDM-JF)was proposed.Convolutional neural networks were used to extract defect-related structural semantic features in codes,and they were combined with handcrafted features to form joint features.On this basis,two autoencoders including distribution matching layers were constructed to learn the global and local transferable feature across projects for prediction model training.Experiments on 798 pairs of cross-project defect prediction tasks were conducted in the software defect data warehouse.Compared with the related cross-project defect prediction methods,the F-measure and MCC predicted using DeDM-JF are significantly improved.
作者 邱少健 陆璐 邹全义 QIU Shao-jian;LU Lu;ZOU Quan-yi(College of Mathematics and Informatics,South China Agricultural University,Guangzhou 510640,China;School of Computer Science and Engineering,South China University of Technology,Guangzhou 510006,China;Modern Industrial Technology Research Institute,South China University of Technology,Zhongshan 528400,China;School of Software Engineering,South China University of Technology,Guangzhou 510006,China)
出处 《计算机工程与设计》 北大核心 2024年第1期204-211,共8页 Computer Engineering and Design
基金 国家自然科学基金面上基金项目(61370103) 中山市产学研重大基金项目(210610173898370) 广东省普通高校青年创新人才基金项目(2020KQNCX008) 广州市基础与应用基础研究基金项目(202201010312)。
关键词 软件缺陷预测 跨项目缺陷预测 卷积神经网络 联合特征 自编码器 分布匹配 迁移学习 software defect prediction cross-project defect prediction convolutional neural networks joint feature autoencoder distribution matching transfer learning
  • 相关文献

参考文献5

二级参考文献16

共引文献193

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部