期刊文献+

基于互信息的多导联心电图排序方法

Sorting Method of Multi Leads ECG Based on Mutual Information
下载PDF
导出
摘要 基于卷积神经网络的心电图(Electrocardiograph,ECG)自动分类研究从默认12导联顺序的心电图中提取特征,未考虑导联顺序对卷积网络特征提取的影响。为解决该问题,文中提出了一种基于互信息的两端递增排序方法,使用互信息衡量导联之间的相关性,并根据导联之间的相关性以及二维卷积的特点将关系密切的导联相邻排序。实验结果表明,多导联心电图排序方法在3个数据库和3个卷积网络分类模型上取得了显著效果,F1、正确率、召回率、精确率以及杰卡德系数数值分别提升了0.011、0.009、0.007、0.014和0.013,汉明损失值减低了0.002。 The studies of automatic Electrocardiograph(ECG)classification based on convolutional neural networks all extract features from the ECG with the default 12-lead sequence,ignore the influence of lead sequence on feature extraction of convolutional network.To solve the problem,this study proposes a 2-end increasing sorting method based on mutual information,which uses mutual information to measure the correlation between leads.According to the correlation between leads and the characteristics of two-dimensional convolution,the adjacent connections of closely related leads are sorted.The experimental results show that the multi-lead ECG sorting method has achieved remarkable results on three databases and three convolutional network classification models.F1,accuracy,recall,accuracy,and Jacquard′s coefficient of the proposed method increases by 0.011,0.009,0.007,0.014,and 0.013,while Hamming′s loss decreases by 0.002.
作者 南娇 孙占全 NAN Jiao;SUN Zhanquan(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《电子科技》 2024年第2期55-60,共6页 Electronic Science and Technology
基金 国防基金(JCKY2019413D001) 上海理工大学医工交叉项目(10-21-302-413)。
关键词 心电图 心率不齐 卷积神经网络 互信息 多导联 排序 分类 相关性 electrocardiogram arrhythmia convolutional neural network mutual information multi lead sorting classification correlation
  • 相关文献

参考文献7

二级参考文献50

  • 1中国心血管健康与疾病报告编写组,王增武,胡盛寿.中国心血管健康与疾病报告2019概要[J].中华老年病研究电子杂志,2020(4):4-15. 被引量:943
  • 2温福喜,刘宏伟.基于2D-PCA和2D-LDA的人脸识别方法[J].计算机应用研究,2007,24(8):201-203. 被引量:7
  • 3Yeh Y C, Wang W J,Chiou C W. Feature selection algorithm for ECGsignals using range-overlaps method[ J]. Expert Systems with Ap-plications,2010,37(4) :2088-2096.
  • 4Martis R J,Chakraborty C, Ray A K. A two-stage mechanism for reg-istration and classification of ECG using Gaussian mixture model[ J].Pattern Recognition, 2009, 42(11) :2979-2988.
  • 5Frey B J, Dueck D. Clustering by passing message between datapoints[J]. Science, 2007,315(5814): 972-976.
  • 6Ebrahimzadeh A, Khazaee A. Detection of premature ventricular con-tractions using MLP neural networks : a comparative study [ J ] . Mea-surement,2010,43( 1 ) :103-112.
  • 7Yu S N,Chou K T. Selection of significant independent components forECG beat classification [ J ]. Expert Systems with Applications,2009,36(2) :2088-2096.
  • 8Korurek M,Dogan B. ECG beat classification using particle swarm op-timization and radial basisfunction neural network[ J]. Expert Sys-tems with Applications,2010, 37(12) :7563-7569.
  • 9蒋德育,刘光远,龙正吉.基于心电P-QRS-T波的特征提取及情感识别[J].计算机工程与应用,2009,45(8):213-215. 被引量:8
  • 10牛丽平,郑延斌,李新源,窦育强.融合小波与2D PCA的贝叶斯人脸识别[J].计算机工程与应用,2009,45(13):179-181. 被引量:3

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部