期刊文献+

碳源对反应烧结碳化硅性能的影响

Effects of Carbon Sources on Properties of Reaction-Bonded Silicon Carbide
下载PDF
导出
摘要 以炭黑和石墨为碳源,控制碳添加量为10%(质量分数,下同),研究了不同炭黑、石墨比例对反应烧结碳化硅性能的影响。结果表明,当炭黑添加量为4%、石墨添加量为6%时,反应烧结碳化硅的力学性能较佳,此时抗弯强度为251.7 MPa,断裂韧性为4.29 MPa·m^(1/2)。通过XRD检测及对XRD谱进行Rietveld精修,分析发现炭黑添加量为4%、石墨添加量为6%的反应烧结碳化硅中的游离Si含量为24.44%(质量分数),而石墨添加量为10%的反应烧结碳化硅中的游离Si含量为28.57%(质量分数),相比前者游离Si含量较高,减少游离Si的含量可以提高反应烧结碳化硅的力学性能。 The carbon black and graphite were used as carbon sources to fabricate reaction-bonded SiC,and the total content of carbon sources was 10%(mass fraction,the same below).The effects of different ratios of carbon black and graphite on properties of reaction-bonded SiC were investigated.The results show that the reaction-bonded SiC with 4% carbon black and 6% graphite has good mechanical properties,the flexural strength and fracture toughness reach to 251.7 MPa and 4.29 MPa·m^(1/2).The mineral composition of reaction-bonded SiC was measured by XRD,the Rietveld simulation results of XRD patterns were adopted to measure phase content.The free Si content in reaction-bonded SiC with 4% carbon black and 6% graphite is 24.44%(mass fraction).The free Si content in reaction-bonded SiC with 10% graphite reaches to 28.57%(mass fraction),which is higher than that of the former.The decrease of free Si contributes to the improvement of mechanical properties of reaction-bonded SiC.
作者 张喜飞 陈定 顾华志 黄奥 付绿平 ZHANG Xifei;CHEN Ding;GU Huazhi;HUANG Ao;FU Lvping(The State Key Laboratory of Refractories and Metallurgy,Wuhan University of Science and Technology,Wuhan 430081,China)
出处 《硅酸盐通报》 CAS 北大核心 2024年第1期312-316,353,共6页 Bulletin of the Chinese Ceramic Society
基金 国家自然科学基金(52002295,52172023)。
关键词 反应烧结碳化硅 炭黑 石墨 力学性能 游离Si reaction-bonded SiC carbon black graphite mechanical property free Si
  • 相关文献

参考文献6

二级参考文献65

  • 1Shuaib M, Davies T J. Wear, 2001, 249: 20-30.
  • 2Feria-varela F M, Martínez-Fernández J, Arellano-L6pez A R, et al. Journal of the European Ceramic Society,2002, 22: 2719-2725.
  • 3Munoz A, Martínez Fernández, Singh M. Journal of the European Ceramic Society, 2002, 22: 2727-2733.
  • 4Prasert S S, Joaquin A, Orejas, et al. Industials ( ) Engineering Research, 2001, 40: 5191-5198.
  • 5Ilegbusi O J, Yang J J, Mahmut D, et al. Composites Part A, 1999, 30: 339-348.
  • 6Behrendt D R, Singh M. Journal of Materials Synthesis and Processing, 1994, 2 (2): 117-123.
  • 7Pampuch R, Walasek E, Bia?oskórski J. Ceramics International, 1986, 12: 99-106.
  • 8Pampuch R, Bia?oskórski J, Walasek E. Ceramics International, 1987, 12: 63-68.
  • 9Ness J N, Page T F. Journal of Materials Science, 1986, 21: 1377-1397.
  • 10Tomlinson W J, Khela S. Journal of Materials Science, 1992, 27: 3372-3378.

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部