期刊文献+

应用于毫米波车车通信的多模态感知辅助波束预测

Multi-modality Sensing Aided Beam Prediction for mmWave V2V Communications
下载PDF
导出
摘要 为了确保车联网通信的传输可靠性,大规模多天线技术的毫米波通信亟需精确的波束赋形.在高动态的车辆通信环境下,传统的波束对准方式会造成巨大的资源开销,难以在相干时间内建立可靠链路.因此,文中提出基于多模态感知信息辅助的波束预测方案.该方案融合视觉和激光雷达点云两种非射频感知信息,利用深度神经网络进行多模态信息的特征提取,通过透视投影实现图像空间语义信息和物理空间位置信息的精准匹配和深度融合.通过协同感知坐标校正和车辆位置预测,将物理环境的特征精确映射到角域信道,从而实现实时准确的波束预测.在多模态感知仿真数据集(M3SC)上的测试结果表明,文中方案能实现较高的角度追踪精度和可达通信速率. To ensure the transmission reliability of vehicular communication network,precisely aligned beamforming of millimeter-wave communication using massive multi-input multi-output(mMIMO)technology is urgently required.In highly dynamic vehicular communication scenarios,traditional beam alignment schemes incur significant resource overhead and struggle to establish reliable links within the coherence time.To address this critical challenge,a scheme of multi-modality sensing aided beam prediction for mmWave V2V communications is proposed.Two non-RF sensing modalities,vision and ranging(LiDAR)point cloud,are integrated,and deep neural networks are employed for feature extraction and integration of multi-modal information.Accurate matching and deep fusion of image space semantic information and physical space location information are achieved through perspective projection.By collaborative sensing coordinate calibration and vehicle position prediction,the features of physical environment are accurately mapped to the angular-domain channel,enabling real-time and precise beam prediction.The experimental results on the mixed multi-modal sensing-communication dataset(M 3SC)show that the proposed scheme achieves high angle tracking accuracy and achievable communication rate.
作者 文韦博 张浩天 高诗简 程翔 杨柳青 WEN Weibo;ZHANG Haotian;GAO Shijian;CHENG Xiang;YANG Liuqing(School of Electronics,Peking University,Beijing 100871;Samsung Semiconductor,Samsung SoC Research and Deve-lopment Lab,San Diego,CA 92121,USA;Intelligent Transportation Thrust,The Hong Kong University of Science and Technology(Guangzhou),Guangzhou 511455;Internet of Things Thrust,The Hong Kong University of Science and Technology(Guangzhou),Guangzhou 511455;Department of Electronic and Computer Engineering,The Hong Kong University of Science and Technology,Hong Kong 999077,China)
出处 《模式识别与人工智能》 EI CSCD 北大核心 2023年第11期997-1008,共12页 Pattern Recognition and Artificial Intelligence
基金 国家重点研发计划项目(No.2020AAA0108101) 国家自然科学基金项目(No.62125101,62341101,62001018,62301011,U23A20339) 新基石科学基金会科学探索奖 广州市科技计划项目(No.2023A03J0011) 广东省普通高校重点科研项目(No.2023ZDZX1037)资助。
关键词 车辆通信网络 车车通信 通信感知一体化 多模态感知 波束预测 深度学习 Vehicular Communication Network V2V Communications Integrated Sensing and Communications Multi-modal Sensing Beam Prediction Deep Learning
  • 相关文献

参考文献3

二级参考文献20

  • 1XU Q, Mark T, Ko J, etal. Vehicle-to-Vehicle Safety Messaging in DSRC [ C ]//Proceedings of the 1st ACM International Workshop on Vehicular Ad Hoc Networks, Philadelphia: ACM,2004 : 19-28.
  • 2A. GOEL, V. GRUHN. Integration of Telematics for Effi- cient Management of Carrier Operations [ C ] , IEEE Inter- national Conference on e- Business Engineering, 2005. ICEBE 2005,404-408.
  • 3David S,Breed. Tclematics System for Vehicle Diagnostics. United States Patent. Patent number: 6738697. 159-210.
  • 4Hewer T D,Nekovee M. Congestion Reduction Using Ad- Hoc Message Dissemination in Vehicular Networks [ C ]. The First International ICST Conference on Communica- tions Infrastructure, Systems and Applications in Europe, 2009 : 128-139.
  • 5IEEESTD. 2010.5514475. IEEE Standard for Information Technology- Telecommunications and Information Ex- change between Systems- Local and Metropolitan Area Networks-Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PITY) Specifications Amendment 6: Wireless Access in Vehicular Environments, July 2010.
  • 6Wahid N, Luiz A S, Denis T. Adaptive Approaches for Efficient Parallel Algorithms on Cluster-based Systems. International Journal of Grid and Utility Computing, 2009,1 (2) :98-108.
  • 7Yu T Y, Chong P H J, Zhang M. Performance of Eifcient CBRP in Mobile Ad Hoc Networks (MANETS). Pro- ceedings of Vehicular Technology Conference, Calgary, Alberta, Canada, September2008.
  • 8LU X B, ZHOU L Y. A Rehable Dynamic Source routing based Cluster Label in Mobile Ad ltoc Networks. Pro- ceedings of Vehicular Technology Conference, Barcelo- na, Spain, April 2009.
  • 9Chatterjec M, Sas S K, Turgut D. An On- Demand Weighted Clustering Algorithm (WCA) for Ad Hoc Net- works. Proceedings of Global Telecommunications Con- ference, GLOBECOM ' 00,San Francisco, USA, Novem- ber 2000.
  • 10Kevin C L, Michaet L, Jerome H, et al. LOUVER: Land- mark Overlays for Urban Vehicular Routing Enviromnents. Proceedings of the 68th Vehicular Technology Conference ( VTC-Fall08 ), Calgary, Canada, September 2008.

共引文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部