期刊文献+

面向道路目标检测的多模态融合语义传输

Multimodal Fusion-Based Semantic Transmission for Road Object Detection
下载PDF
导出
摘要 在长尾效应的极端场景下,多车多传感器协作感知可为车辆提供有效的感知信息,但异构数据的差异化带宽限制和不同的数据格式使车辆在处理信息时难以进行统一高效的调度.为了在有限通信带宽下实现不同车辆间多传感器信息的有机融合,文中从语义通信的角度出发,提出基于Transformer的多模态融合目标检测语义通信模型.不同于传统的数据传输方案,文中模型利用自注意力机制融合不同模态的数据,着重探究各模态数据之间的语义相关性与依赖性.在有限的通信资源下帮助车辆进行信息传递和相互协作,提高车辆对复杂路况的理解能力.在Teledyne FLIR Free ADAS Thermal数据集上的实验表明,文中模型在多模态目标检测语义通信任务中表现出色,不仅大幅提升目标检测的准确性,同时也减少一半传输代价. In extreme scenarios with long-tail effects,collaborative perception involving multiple vehicles and sensors can provide effective sensory information for vehicles.However,the differentiation in heterogeneous data,coupled with bandwidth constraints and diverse data formats,makes it challenging for vehicles to achieve unified and efficient scheduling in processing.To organically integrate multi-sensor information among different vehicles under limited communication bandwidth,a semantic communication framework for multimodal fusion object detection based on Transformer is proposed in this paper.Unlike traditional data transmission solutions,self-attention mechanisms are utilized in the proposed framework to fuse data from different modalities,focusing on exploring the semantic correlation and dependencies among modal data.It helps vehicles transmit information and collaborate under limited communication resources,thereby enhancing their understanding of complex road conditions.The experimental results on Teledyne FLIR Free ADAS Thermal dataset show that the proposed model performs well in multimodal object detection semantic communication tasks with accuracy of object detection significantly improved and transmission costs reduced by half.
作者 朱增乐 魏智伟 张荣庆 杨柳青 ZHU Zengle;WEI Zhiwei;ZHANG Rongqing;YANG Liuqing(Intelligent Transportation Thrust,The Hong Kong University of Science and Technology(Guangzhou),Guangzhou 511455;Shanghai Research Institute for Intelligent Autonomous Systems,Tongji University,Shanghai 201210;School of Software Engineering,Tongji University,Shanghai 201804)
出处 《模式识别与人工智能》 EI CSCD 北大核心 2023年第11期1009-1018,共10页 Pattern Recognition and Artificial Intelligence
基金 国家重点研发计划项目(No.2022YFB3104200) 国家自然科学基金面上项目(No.62271351) 国家自然科学基金委员会项目(No.U23A20339) 广州市科技项目(No.2023A03J0011) 广东省教育厅科学研究重点项目(No.2023ZDZX1037)资助。
关键词 道路目标检测 异构数据 语义通信 多模态融合 自注意力机制 Road Object Detection Heterogeneous Data Semantic Communication Multimodal Fusion Self-Attention Mechanism
  • 相关文献

参考文献4

二级参考文献8

共引文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部