期刊文献+

具有n-4个悬挂点的双圈补图的最小特征值的下界

The Lower Bounds of the Least Eigenvalue of Complements of Bicyclic Graphs with n−4 Pendant Vertices
下载PDF
导出
摘要 图的最小特征值作为刻画图结构性质的参数具有重要的研究意义,且相比于谱半径,图的最小特征值研究较少.在补图简单无向且连通的情况下,通过运用相关知识分析,在有n-4个悬挂点的n阶双圈图集中刻画了最小邻接特征值的下界. The least eigenvalue as a parameter to characterize the structural properties of a graph,has important research value.Comparing with the spectral radius,the least eigenvalue of a graph is less studied.The graphs in this paper are simple,undirected and connected,and we characterize the lower bounds of the least adjacency eigenvalue of graphs in the set of bicyclic graphs with n vertices and n−4 pendant vertices by using relevant knowledge analysis and demonstration.
作者 周恋恋 刘康 孟吉翔 ZHOU Lianlian;LIU Kang;MENG Jixiang(School of Mathematics and System Sciences,Xinjiang University,Urumqi Xinjiang 830017,China)
出处 《新疆大学学报(自然科学版)(中英文)》 CAS 2024年第1期20-26,36,共8页 Journal of Xinjiang University(Natural Science Edition in Chinese and English)
基金 新疆维吾尔自治区高校科研计划自然科学重点项目“图矩阵的特征值及其应用”(XJEDU2021I001)
关键词 补图 双圈图 最小特征值 下界 complement graphs bicyclic graphs least eigenvalue lower bounds
  • 相关文献

参考文献2

二级参考文献3

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部