期刊文献+

基于LCNN-Ⅱ模型的光通信信号调制格式识别方法

Optical communication signal modulation format identification based on the LCNN-Ⅱ model
下载PDF
导出
摘要 针对光通信信号调制格式识别准确率较低的问题,提出了一种基于改进Inception结构的轻量级卷积神经网络(Lightweight Convolutional Neural Network with Improved Inception,LCNN-Ⅱ)模型的光通信信号调制格式识别方法。以不同传输条件下调制格式的星座图为基础,使用二值化、灰度增强、邻域灰度增强这3种特征图像生成算法对星座图进行处理,生成特征图像矩阵,构建调制信号的特征参数的数据集。利用改进的Inception结构,设计集成Inception模块的LCNN-Ⅱ模型,以提高模型的识别准确率。仿真结果表明,所提方法可以较好地保存光通信信息图像的特征,在传输距离为120 km的条件下,识别准确率达到了95.71%。与相关方法相比,所提方法的识别准确率较高。 For the problem of low identification accuracy when recognizing the modulation formats of optical communication signals,a modulation format recognition method for optical communication signals based on a lightweight convolutional neural network with improved Inception(LCNN-Ⅱ)model is proposed.Based on the constellation diagrams of modulation formats under different transmission conditions,constellation diagrams are processed by three feature image generation algorithms,namely binarization,grayscale enhanced,and neighborhood grayscale enhanced,to generate feature image matrices and construct the dataset of feature parameters of the modulated signals.The integrated inception module is designed to build the LCNN-Ⅱ model to improve the recognition accuracy.Simulation results show that the proposed method can effectively preserve the features of optical communication information images,and the recognition accuracy reaches 95.71% under the condition of a transmission distance of 120 km.Compared with relevant methods,the proposed method has a higher recognition accuracy.
作者 梁猛 陈魏雯 LIANG Meng;CHEN Weiwen(School of Electronic Engineering,Xi’an University of Posts and Telecommunications,Xi’an 710121,China;Xi’an Electromagnetic Sensor and Optoelectronic Sensor Engineering Laboratory,Xi’an 710121,China)
出处 《西安邮电大学学报》 2023年第6期39-50,共12页 Journal of Xi’an University of Posts and Telecommunications
基金 国家自然科学基金项目(41974130)。
关键词 调制格式识别 卷积神经网络 深度学习 邻域灰度增强算法 modulation format identification CNN deep learning neighborhood grayscale enhanced algorithm
  • 相关文献

参考文献8

二级参考文献136

  • 1林心桐,张琳,吴志强,姜军.基于卷积神经网络与循环谱图的调制识别方法[J].太赫兹科学与电子信息学报,2021,19(4):617-622. 被引量:5
  • 2LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
  • 3HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets [J]. Neural Computation, 2006, 18(7): 1527-1554.
  • 4LEE H, GROSSE R, RANGANATH R, et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations [C]// ICML '09: Proceedings of the 26th Annual International Conference on Machine Learning. New York: ACM, 2009: 609-616.
  • 5HUANG G B, LEE H, ERIK G. Learning hierarchical representations for face verification with convolutional deep belief networks [C]// CVPR '12: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2012: 2518-2525.
  • 6KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [C]// Proceedings of Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2012: 1106-1114.
  • 7GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2014: 580-587.
  • 8LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2015: 3431-3440.
  • 9SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. [2015-11-04]. http://www.robots.ox.ac.uk:5000/~vgg/publications/2015/Simonyan15/simonyan15.pdf.
  • 10SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2015: 1-8.

共引文献581

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部