期刊文献+

基于深度孪生自回归网络的无监督异常用电检测

Unsupervised abnormal power consumption detection via deep siamese autoregressive network
下载PDF
导出
摘要 异常用电检测旨在识别出不符合正常用电规律或者违反用电合约的用电行为。针对现有基于重构的检测方法依赖标记的正常样本和难以捕捉复杂时间依赖性的问题,提出一种基于深度孪生自回归网络的无监督异常用电行为检测模型(DSAD)。所提模型通过两个孪生自回归子网络来分别独立地对无标记的输入数据进行重构,再将两个子网络的重构误差相结合来预测数据中的正常样本,并利用多头自注意力机制来有效地捕捉时间依赖性、周期性和随机性等复杂特征。在大规模时序数据集和国家电网真实用电数据集上进行实验,所获得的结果表明,DSAD模型在AUC以及AP等性能指标上取得了更好的检测效果。 Abnormal electricity consumption detection aims to identify electricity consumption behaviors that do not conform to normal electricity consumption patterns or violate electricity consumption contracts.To address the issues of existing reconstruction-based detection methods relying on labeled normal samples and failing to capture complex time dependencies,this paper proposed an unsupervised abnormal electricity consumption detection model based on deep siamese autoregressive networks(DSAD),which used two siamese autoregressive subnetworks to independently reconstruct the unlabeled input data,and then combined the reconstruction errors of the two subnetworks to predict the normal samples in the data,and utilized multi-head self-attention mechanism to effectively capture complex features such as time dependency,periodicity and randomness.The results obtained from experiments on large-scale time series datasets and real electricity consumption datasets from state grid show that the proposed method achieves better detection performance in terms of AUC and AP.
作者 李琪林 严平 宿欣宇 袁钟 彭德中 刘益志 Li Qilin;Yan Ping;Su Xinyu;Yuan Zhong;Peng Dezhong;Liu Yizhi(Marketing Service Center of State Grid Sichuan Electric Power Corporation,Chengdu 610045,China;College of Computer Science,Sichuan University,Chengdu 610065,China)
出处 《计算机应用研究》 CSCD 北大核心 2023年第12期3717-3722,3727,共7页 Application Research of Computers
基金 国网四川省电力公司科技项目(521997230015)。
关键词 智能电网 异常用电检测 深度孪生自回归网络 多头注意力机制 无监督学习 smart grid abnormal electricity consumption detection deep siamese autoregressive network multi-head attention unsupervised learning
  • 相关文献

参考文献8

二级参考文献91

  • 1王德文,杨凯华.基于生成式对抗网络的窃电检测数据生成方法[J].电网技术,2020,44(2):775-782. 被引量:50
  • 2曾伶俐,万洪海.基于GSM/SMS的远程电参数抄表系统[J].三峡大学学报(自然科学版),2005,27(4):355-357. 被引量:1
  • 3田新广,孙春来,段洣毅,钱小军,邱志明.基于机器学习的用户行为异常检测模型[J].计算机工程与应用,2006,42(19):101-103. 被引量:8
  • 4中国电机工程学会电力信息化专业委员会.中国电力大数据发展白皮书(2013)[R].北京:中国电力出版社,2013.
  • 5Yap K S,Tiong S K,Nagi J,et al.Comparison of supervised learning techniques for non-technical loss detection in power utility[J].International Review on Computers and Software,2012,7(2):626-636.
  • 6Nagi J,Yap K S,Tiong S K,et al.Nontechnical loss detection for metered customers in power utility using support vector machines[J].IEEE Transactions on Power Delivery,2010,25(2):1162-1171.
  • 7León C,Biscarri F,Monedero I,et al.Variability and trend-based generalized rule induction model to NTL detection in power companies[J].IEEE Transactions on Power Systems,2011,26(4):1798-1807.
  • 8Fontugne R,Tremblay N,Borgnat P,et al.Mining anomalous electricity consumption using ensemble empirical mode decomposition[C]//2013 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP).Vancouver,BC:IEEE,2013:5238-5242.
  • 9Nagi J,Yap K S,Tiong S K,et al.Improving SVM-based nontechnical loss detection in power utility using the fuzzy inference system[J].IEEE Transactions on Power Delivery,2011,26(2):1284-1285.
  • 10Keogh E,Lin J,Lee S H,et al.Finding the most unusual time series subsequence:algorithms and applications[J].Knowledge and Information Systems,2007,11(1):1-27.

共引文献219

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部