摘要
针对广西地区南接热带海洋、西临云贵高原、地形起伏较大等特点,通过分析广西2014—2016年的MERRA-2再分析资料格网点高度处的加权平均温度(T_(m))及格网点垂直方向温度递减率(K)的时序变化特征,建立了每个格网点高度处的加权平均温度模型和温度递减率模型,进而建立了广西地区MERRA-2加权平均温度模型(GXT_(m))。以2017年探空站资料计算得到的T_(m)作为参考值,对其进行精度检验,并与Bevis模型、中国东部模型、广西气象参数模型以及GPT2w-1和GPT2w-5模型进行比较。结果表明:GXT_(m)模型的平均偏差(Bias)和均方根误差(RMSE)分别为0.26和2.51 K,GXT_(m)模型的精度(RMSE)较Bevis模型、中国东部模型、GPT2w-1模型和GPT2w-5模型分别提高了32%、34%、17%和46%,与广西气象参数模型精度相当。
In view of the characteristics of Guangxi,such as the tropical ocean to the south,Yunnan-Guizhou Plateau to the west,and large topographic fluctuations,and the temporal variation characteristics of the temperature decline rate in the vertical direction of the grid height,the weighted average temperature model and temperature decline rate model at each grid height were established by analyzing the weighted average temperature(T_(m))at the grid height of the MERRA-2 reanalysis data grid from 2014 to 2016.Furthermore,a MERRA-2 weighted average temperature model(GXT_(m))was established for Guangxi region.Using the data calculated from radiosonde stations in 2017 as reference values,the accuracy of GXT_(m) model was tested and compared with Bevis model,Eastern China model,Guangxi meteorological parameter model,GPT2w-1 model and GPT2w-5 model.The results show that the mean deviation(Bias)and root mean square error(RMSE)of the GXT_(m) model are 0.26 and 2.51 K,respectively.RMSE of the GXT_(m) model is improved by 32%,34%,17%,and 46%,which higher than that of the Bevis model,the Eastern China model,the GPT2w-1 model,and the GPT2w-5 model.But it is equivalent to the accuracy of the Guangxi meteorological parameter model.
作者
谢劭峰
张继洪
黄良珂
张亚博
唐友兵
XIE Shaofeng;ZHANG Jihong;HUANG Liangke;ZHANG Yabo;TANG Youbing(College of Geomatics and Geoinformation,Guilin University of Technology,Guilin 541006,China;Guangxi Key Laboratory of Spatial of Information and Geomatics,Guilin University of Technology,Guilin 541006,China)
出处
《桂林理工大学学报》
CAS
北大核心
2023年第4期646-652,共7页
Journal of Guilin University of Technology
基金
国家自然科学基金项目(41864002)
广西自然科学基金项目(2018GXNSFAA281182)。