摘要
知识图谱是大数据时代下知识工程的关键技术。利用知识图谱强大的语义理解和知识组织能力,可以解决现代化农业建设中农业知识分散无序、知识覆盖范围不足等问题针对农业领域数据复杂、专业性强等特点,给出了农业知识图谱的构建方法与框架;综述了农业知识图谱构建中本体构建、知识抽取、知识融合以及知识推理四个关键技术的国内外研究现状;系统梳理了农业知识图谱在决策支持、智能问答与推荐系统的应用;最后,介绍了几个具体的农业知识图谱实例。根据农业知识图谱的研究现状,对其未来的研究方向进行了展望。
Knowledge graphs are a key technology in the era of big data,specifically for knowledge engineering.Utilizing the powerful semantic understanding and knowledge organization capabilities of knowledge graphs,issues such as scat-tered and disordered agricultural knowledge,and insufficient coverage of knowledge in the construction of modern agri-culture can be resolved.Firstly,considering the complexity and specialty of agricultural data,the construction methods and framework of agricultural knowledge graphs are introduced.Secondly,the current domestic and international research status of the four key technologies in the construction of agricultural knowledge graphs-ontology construction,knowledge extraction,knowledge fusion,and knowledge reasoning are reviewed.Furthermore,the systematic applications of agricul-tural knowledge graphs in decision support,intelligent question-answering systems,and recommendation systems are sorted out.Lastly,several specific instances of agricultural knowledge graphs are presented.Based on the current status of research on agricultural knowledge graphs,prospects for its future research directions are offered.
作者
唐闻涛
胡泽林
TANG Wentao;HU Zelin(School of Physics and Electronic Information,Gannan Normal University,Ganzhou,Jiangxi 341000,China)
出处
《计算机工程与应用》
CSCD
北大核心
2024年第2期63-76,共14页
Computer Engineering and Applications
基金
国家重点研发计划项目(2017YFD0701600)
赣南师范大学博士科研启动基金(13SJJ202130)。
关键词
农业知识图谱
本体
知识抽取
知识融合
知识推理
agriculture knowledge graph
ontology
knowledge extraction
knowledge fusion
knowledge reasoning