摘要
提出了一种分数阶域多尺度特征卷积神经网络的智能诊断方法。首先,对原始振动信号进行分数阶傅里叶变换(FRFT),获得多个分数阶次下振动数据的时频特征;其次,构建具有多尺度特征学习模块的轻量级卷积神经网络(MFL-Net),进一步从分数阶域时频特征中提取故障信息,通过训练获得诊断模型并应用于故障识别;最后,通过离心泵和滚动轴承故障数据集对所提方法的有效性进行验证。结果表明:所提方法可以有效提取非平稳信号中的故障特征,并实现故障的准确诊断。
A novel intelligent fault diagnosis method was proposed based on multi-scale feature learning convolutional neural network(MFL-Net)and fractional Fourier transform(FRFT).First,FRFT was applied to original vibration signal for obtaining fractional domain feature data under multiple fractional orders.Then,the MFL-Net with multi-scale feature learning modules was constructed to further extract fault features from fractional domain data,and the fault type can be diagnosed by the model.Finally,the effectiveness of the proposed method was verified by fault datasets of centrifugal pump and rolling bearing.Results show that the proposed method can effectively extract the fault features from non-stationary signals and thus identify faults accurately.
作者
时培明
焦阳
陈卓
许学方
李瑞雄
谯自健
SHI Peiming;JIAO Yang;CHEN Zhuo;XU Xuefang;LI Ruixiong;QIAO Zijian(School of Electrical Engineering,Yanshan University,Qinhuangdao 066004,Hebei Province,China;Taiyuan Heavy Industry Co.,Ltd.,Taiyuan 030024,China;School of Energy and Power Engineering,Xi'an Jiaotong University,Xi'an 710048,China;School of Mechanical Engineering and Mechanics,Ningbo University,Ningbo 315211,Zhejiang Province,China;State Key Laboratory of Performance Monitoring and Protecting of Rail Transit Infrastructure,East China Jiaotong University,Nanchang 330013,China)
出处
《动力工程学报》
CAS
CSCD
北大核心
2023年第10期1326-1334,共9页
Journal of Chinese Society of Power Engineering
基金
河北省自然科学基金资助项目(E2022203093)
中央引导地方科技发展资金资助项目(216Z4301G、216Z2102G)
秦皇岛市科学技术研究与发展计划资助项目(202101A345)
华东交通大学轨道交通基础设施性能监测与保障国家重点实验室开放课题基金资助项目(HJGZ2021114)
燕山大学基础创新科研培育资助项目(2021LGQN022)。
关键词
故障诊断
分数阶傅里叶变换
卷积神经网络
离心泵
滚动轴承
fault diagnosis
fractional Fourier transform
convolutional neural network
centrifugal pump
rolling bearing