摘要
Recent studies on high-multiplicity events in small collision systems(proton-proton and proton-lead)have drawn considerable research interest toward the possibility of the formation of partonic medium in such systems.One of the important consequences of the formation of dense partonic medium is the quenching of high-momentum final-state particles,resulting in several experimental observations such as suppression in nuclear modification factor RAA,modification of jet shape observableρ(r)and jet fragmentation(z^(ch))distributions,etc.In this work,we studyρ(r)and z^(ch)for inclusive charged-particle jets in proton-proton(pp)collisions at√s=13 TeV using the PYTHIA 8 Monash 2013 Monte Carlo simulation.We show that the color reconnection(CR)and multiparton interaction(MPI)mechanisms in PYTHIA 8 can lead to an increased rate of jet production.We also find that the mechanisms of MPI and CR and change in the gluonic contribution in high-multiplicity events result in significant modification ofρ(r)and z^(ch)compared to those in minimum bias events for 10<p_(T,jet)^(ch)<20 GeV/c.We notice a direct connection of<N_(MPI)>and gluonic contribution with the amount of modification inρ(r):the larger the number of MPIs and/or gluonic contribution,the larger the amount of modification ofρ(r).
基金
the Inspire Fellowship research grant(DST/INSPIRE Fellowship/2018/IF180285).