期刊文献+

基于响应面模型的智能台架供风系统开发

Development of an Intelligent Bench Air Supply System Based on Response Surface Model
下载PDF
导出
摘要 为解决瞬态工况下,汽车主动进气格栅(AGS)开度及风扇转速实时调整,换热器进风量时刻改变,热管理测试台架风机无法实时为换热器提供精准瞬态供风这一问题,应用计算流体力学(CFD)仿真技术,分析了换热器进风量与车速、AGS开度及风扇转速之间的关系,并构建了数学模型,模型预测误差小于6.6%。将该模型置于CANOE设备中,与VN1640设备及风机系统连接,可实时采集车速、AGS开度及风扇转速CAN信号,计算换热器进风量,从而控制风机输出相应风量,实现了台架风机为换热器提供精准、实时供风这一目标。 Under transient conditions,the opening of the car's active grille system(AGS)and the rotational speed of the fan are adjusted in real-time,leading to continuous changes in the air intake volume of the heat exchanger.Consequently,the fan of the thermal management test bench cannot provide accurate and immediate transient air supply for the heat exchanger.In this paper,computational fluid dynamics(CFD)simulation technology is used to analyze the relationship between the inlet air volume of the heat exchanger and factors such as vehicle speed,AGS opening and fan speed.Subsequently,a mathematical model is constructed with a prediction error of less than 6.6%.The model is then integrated into the CANOE device,connected to the VN1640 device and the fan system.The system can collect real-time CAN signals for vehicle speed,AGS opening,and fan speed,calculate the inlet air volume of the heat exchanger,and control the corresponding air volume output from the fan.It achieves the goal of providing the heat exchanger with accurate and real-time air supply through the bench fans.
作者 付宇 闵海涛 孙维毅 杨钫 FU Yu;MIN Haitao;SUN Weiyi;YANG Fang(State Key Laboratory of Automotive Simulation and Control,Changchun 130022,China;CATARC New Energy Vehicle Test Center(Tianjin)Co.,Ltd.,Tianjin 300300,China;General Research and Development Institute,China FAW Corporation Limited,Changchun 130013,China)
出处 《汽车工程学报》 2024年第1期108-115,共8页 Chinese Journal of Automotive Engineering
基金 吉林省重大科技专项项目(20210301023GX)。
关键词 响应面模型 智能供风系统 汽车热管理测试 计算流体力学 response surface models intelligent air supply system vehicle thermal management test computational fluid dynamics
  • 相关文献

参考文献3

二级参考文献19

  • 1王之宏.风荷载的模拟研究[J].建筑结构学报,1994,15(1):44-52. 被引量:209
  • 2龚光彩,任中俊,陈可,李孔清,马扬.列车用V型格栅气粒分离特性的数值模拟[J].铁道学报,2006,28(4):38-44. 被引量:5
  • 3[1]Shyy W, Tucker P K, Vaidyanathan R. Response Surface and Neural Network Techniques for Rocket Engine Injector Optimization. In: AIAA/SAE/ASME/ASEE 35th Joint Propulsion Conference. 1999. Paper No.99-2455
  • 4[2]Papila N, Shyy W, Haftka R, et al. Assessment of Neural Net and Polynomial-Based Techniques for Aerodynamic Applications. In: AIAA 17th Applied Aerodynamics Conference. Norfolk, VA, 1999. Paper No. 99-3167
  • 5[3]Vaidyanathan R, Papila N, Shyy W, et al. Neural Network and Response Surface Methodology for Rocket Engine Component Optimization. In: 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. 2000. Paper No.2000-4880, Long Beach, CA
  • 6[4]Papila N, Shyy W, Griffin L, et al. Preliminary Design Optimization for a Supersonic Turbine for Rocket Propulsion. In: 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2000. Paper No.2000-3242, Huntsville, AL
  • 7[5]Madsen J I, Shyy W, Haftka R T. Response Surface Techniques for Diffuser Shape Optimization. AIAA Journal,2000, 38(9): 1512-1518
  • 8[6]Papila N, Shyy W, Griffin L, et al. Shape Optimization of Supersonic Turbines Using Response Surface and Neural Network Methods. In: AIAA 39th Aerospace Sciences Meeting & Exhibit. 2001. Paper No.2001-1065
  • 9[7]Nateri K Madavan, Man Mohan Rai, Frank W Huber. Neural Net-Based Redesign of Transonic Turbines for Improved Unsteady Aerodynamic Performance. NASA/TM-1998-208754
  • 10[8]S Pierret, R A Van den Braembussche. Turbomachinery Blade Design Using a Navier-Stokes Solver and Artificial Neural Network. ASME Journal of Turbomachinery,1999, 121:326-332

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部