期刊文献+

双沟槽SiC金属-氧化物-半导体型场效应管重离子单粒子效应

Heavy ion single event effect in double-trench SiC metal-oxide-semiconductor field-effect transistors
下载PDF
导出
摘要 本文针对第四代双沟槽型碳化硅场效应晶体管升展了不同源漏偏置电压下208 MeV锗离子辐照实验,分析了器件产生单粒子效应的物理机制.实验结果表明,辐照过程中随着初始偏置电压的增大,器件漏极电流增长更明显;在偏置电压为400 V时,重离子注量达到9×10^(4)ion/cm^(2),器件发生单粒子烧毁,在偏置电压为500 V时,重离子注量达到3×10^(4)ion/cm^(2),器件发生单粒子烧毁,单粒子烧毁阈值电压在器件额定工作电压的34%(400 V)以下.对辐照后器件进行栅特性测试,辐照过程中偏置电压为100 V的器件泄漏电流无明显变化;200 V和300 V时,器件的栅极泄漏电流和漏极泄漏电流都增大.结合TCAD仿真模拟进一步分析器件单粒子效应微观机制,结果表明在低偏压下,泄漏电流增大是因为电场集中在栅氧化层的拐角处,导致了氧化层的损伤;在高偏压下,辐照过程中N-外延层和N+衬底交界处发生的电场强度增大,引起显著的碰撞电离,由碰撞电离产生的局域大电流密度导致晶格温度超过碳化硅的熔点,最终引起单粒子烧毁. In this paper,experiments on 208 MeV Ge ion irradiation with different source-drain bias voltages are carried out for the double-trench SiC metal-oxide-semiconductor field-effect transistors,and the physical mechanism of the single event effect is analyzed.The experimental results show that the drain leakage current of the device increases more obviously with the increase of the initial bias voltage during irradiation.When the bias voltage is 400 V during irradiation,the device has a single event burned at a fluence of 9×10^(4) ion/cm^(2),and when the bias voltage is 500 V,the device has a single event burned at a fluence of 3×10^(4) ion/cm^(2),so when the LET value is 37.3 MeV·cm^(2)/mg,the SEB threshold of DUT does not exceed 400 V,which is lower than 34%of the rated operational voltage.The post gate-characteristics test results show that the leakage current of the device with a bias voltage of 100 V does not change significantly during irradiation.When the bias voltage is 200 V,the gate leakage and the drain leakage of the device both increase,so do they when the bias voltage is 300 V,which is positively related to bias voltage.In order to further analyze the single particle effect mechanism of device,the simulation is conducted by using TCAD tool.The simulation results show that at low bias voltage,the heavy ion incident device generates electron-hole pairs,the electrons are quickly swept out,and the holes accumulate at the gate oxygen corner under the effect of the electric field,which combines the source-drain bias voltage,leading to the formation of leakage current channels in the gate oxygen layer.The simulation results also show that at high bias voltage,the electrons generated by the incident heavy ion move towards the junction of the N-drift layer and the N+substrate under the effect of the electric field,which further increases the electric field strength and causes significant impact ionization.The local high current density generated by the impact ionization and the load large electric field causes the lattice temperature to exceed the melting point of silicon carbide,causing single event burnout.This work provides a reference and support for studying the radiation effect mechanism and putting silicon carbide power devices into aerospace applications.
作者 李洋帆 郭红霞 张鸿 白如雪 张凤祁 马武英 钟向丽 李济芳 卢小杰 Li Yang-Fan;Guo Hong-Xia;Zhang Hong;Bai Ru-Xue;Zhang Feng-Qi;Ma Wu-Ying;Zhong Xiang-Li;Li Ji-Fang;Lu Xiao-Jie(School of Materials Science and Engineering,Xiangtan University,Xiangtan 411105,China;Northwest Institute of Nuclear Technology,Xi’an 710024,China;State Key Laboratory of Science and Technology on Reliability Physics and Application of Electronic Component,China Electronic Product Reliability and Environmental Research Institute,Guangzhou 510610,China)
出处 《物理学报》 SCIE EI CSCD 北大核心 2024年第2期234-241,共8页 Acta Physica Sinica
关键词 双沟槽SiC金属-氧化物-半导体型场效应管 重离子辐照 单粒子烧毁 SiC double-trench metal-oxide-semiconductor field-effect transistors heavy ion irradiation single event burnout
  • 相关文献

参考文献2

二级参考文献13

  • 1Wang S G, Zhang Y M, Zhang Y M 2003 Chin. Phys. 12 322.
  • 2Sheridan D C, Chung G, Clark S, Cressler J D 2001 IEEE Trans. Nucl. Sci. 48 2229.
  • 3Zhang L, Zhang Y M, Zhang Y M, Han C, Ma Y J 2009 Chin. Phys. B 15 1931.
  • 4Kang S M, Ha J H, Park S H, Kim H S, Chun S D, Kim Y K 2007 Nucl. Instrum. Methods A $80 416.
  • 5Brisset C, Noblanc O, Picard C, Joffre F, Brylinski C 2000 1EEE Trans. Nucl. Sci. 47 595.
  • 6Zhang L, Zhang Y M, Zhang Y M, Han C, Ma Y J 2009 Chin. Phys. B 15 3490.
  • 7张林 张义门 张玉明 韩超 马永吉.物理学报,2009,58:288-288.
  • 8Wang S G, Yang L A, Zhang Y M, Zhang Y M, Zhang Z Y, Yan J F 2003 Chin. Phys. 12 0322.
  • 9Storasta L, Bergman J P, Janzen E 2004 Journal of Applied Physics 96 4909.
  • 10张波,邓小川,张有润,李肇基.宽禁带半导体SiC功率器件发展现状及展望[J].中国电子科学研究院学报,2009,4(2):111-118. 被引量:66

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部