期刊文献+

一种用于多域对话状态追踪的知识增强与自注意力引导的图神经网络

Knowledge Enhanced and Self-attention Guided Graph Neural Network for Multi-domain Dialogue State Tracking
下载PDF
导出
摘要 对话状态追踪是对话系统的重要组成部分,旨在从用户与系统的对话中跟踪用户意图,其通常表示为槽位-槽值对序列.近年来,深度神经网络模型在对话状态追踪问题上取得了较大进展.然而,现有模型在槽位相关性建模方面还存在可拓展性差与易引入噪声等问题.针对上述问题,本文提出了一种知识增强与自注意力引导的图神经网络KESA-GNN(Knowledge-Enhanced&Self-Attention Guided Graph Neural Network).首先,KESA-GNN通过外部知识嵌入增强槽的语义表征提升多头自注意力机制对槽位间相关性的辨别能力.其次,为了精确建模槽位间的诸如共指、共现等相关性,提出了一种自注意力引导的图神经网络建模槽位相关性.该网络采用多头注意力机制获得槽位间的注意力矩阵以及槽位表征,通过Max-N Relation算法获得注意力矩阵中强相关关系集,将稠密的注意力矩阵稀疏化,从而引导图神经网络中强相关槽位间的信息传播,降低无关槽位的噪声影响.最后,KESA-GNN采用门控融合机制过滤槽位多头注意力和图神经网络输出的槽位表征,从而获取更准确的槽位表征向量,进一步提升了KESA-GNN的鲁棒性.在多域对话数据集上的实验结果表明,KESA-GNN模型的性能优于最新的基线模型. Dialogue state tracking is an important part of dialogue systems,usually represented as a sequence of slot-value pairs.Dialogue state tracking aims to track user intent from the user′s dialogue with the system.In recent years,deep neural networks have made great progress in the problem of dialogue state tracking.However,existing models still have problems such as poor scalability and easy introduction of noise in slot correlation modeling.This paper proposes a knowledge enhancement and self-attention-guided graph neural network(KESA-GNN)in response to the above problems.First,KESA-GNN enhances the semantic representation of slots by embedding external knowledge to improve the ability of multi-head self-attention to discriminate correlations between slots.Secondly,to accurately model the correlation between slots,such as co-reference and co-occurrence,KESA-GNN proposes a self-attention guided graph neural network to model slot correlations.This network is used to obtain the attention matrix between slots and slot representations through a multi-head attention mechanism.Then KESA-GNN obtains the strong correlation set in the attention matrix through the Max-N Relation algorithm.In this way,KESA-GNN can sparse the dense attention matrix and guide information propagation between strongly correlated slots in the graph neural network,reducing the noise arising from irrelevant slots.Finally,KESA-GNN uses a gated fusion mechanism to filter slot representations output by multi-head attention and graph neural network.Therefore,KESA-GNN can obtain a more accurate slot representation and further improves the robustness.Experimental results on the multi-domain dialogue dataset show that the KESA-GNN model outperforms the state-of-the-art baseline models.
作者 刘漳辉 林宇航 陈羽中 LIU Zhanghui;LIN Yuhang;CHEN Yuzhong(College of Computer and Data Sciences,Fuzhou University,Fuzhou 350116,China;Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing,Fuzhou 350116,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2024年第1期108-114,共7页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61672158)资助 福建省高校产学研合作项目(2021H6022)资助 福建省自然科学基金项目(2020J01494)资助.
关键词 对话状态追踪 知识图谱 自注意力引导 图神经网络 门控融合 dialogue state tracking knowledge graph self-attention guided graph neural network gated fusion
  • 相关文献

参考文献4

二级参考文献105

  • 1拜战胜,蓝岚,彭佳红,陈哲.对话系统中控制模型的比较研究[J].郑州大学学报(理学版),2006,38(4):112-116. 被引量:3
  • 2余伶俐,蔡自兴,陈明义.语音信号的情感特征分析与识别研究综述[J].电路与系统学报,2007,12(4):76-84. 被引量:27
  • 3董士海,王横.人机交互.北京:北京大学出版社,2003.
  • 4Dahland G E, Yu Dong, Deng u, Acero A. Context?dependent pre- trained deep neural networks for large?vocabulary speech recognition. IEEE Transactions on Audio, Speech & Language Processing, 2012, 200): 30-42.
  • 5Federico M, Bertoldi N, Cettolo M. Irstlm , An open source toolkit for handling large scale language models/ /Proceedings of the Annual Conference of the International Speech Communication Association (Interopeech), Brisbane, Australia, 2008: 1618-1621.
  • 6Mohri M, Pereira F, Riley M. Weighted finite-state trans?ducers in speech recognition. Computer Speech &. Language, 2002, 16(1): 69-88.
  • 7Senior A, Lei Xin. Fine context, low-rank, softplus deep neural networks for mobile speech recognition/ /Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal ProcessingCICASSP). Florence, Italy, 2014.
  • 8Zen Hei-Ga, Tokuda K, Black A W. Statistical parametric speech synthesis. Speech Communication, 2009, 51(11): 1039-1064.
  • 9WU Y J, Wang R H. Minimum generation error training for hmm-based speech synthesis/ /Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (lCASSP). Toulouse, France, 2006.
  • 10Yu K, Young S. Continuous FO modelling for HMM based statistical speech synthesis. IEEE Transactions on Audio, Speech and Language Processing, 2011,19(5): 1071-1079.

共引文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部