期刊文献+

改进迁移学习的双分支卷积神经网络图像去雾

Improved transfer learning based dual-branch convolutional neural network image dehazing
下载PDF
导出
摘要 针对现有图像去雾算法存在去雾不彻底和图像颜色失真的问题,提出一种迁移学习子网络和残差注意力子网络相结合的图像去雾模型。采用迁移学习子网络的预训练模型增强样本的特征属性;构建双分支网络结构,并利用残差注意力子网络辅助迁移学习子网络训练网络模型的参数;利用尾部集成学习的方法融合双网络的特征,得到去雾图像的模型参数,完成图像恢复任务。实验结果表明:所提算法在RESIDE数据集和O-HAZE数据集上PSNR指标比GCANet分别提高了1.87 dB和4.22 dB,在O-HAZE数据集上SSIM指标比GCANet提高了6.7%。 To address the problems of incomplete dehazing and image color distortion in the existing image dehazing algorithms,a dehazing network combining transfer learning sub-net and residual attention sub-net is proposed.First,the pre-trained model of the transfer learning subnet is adopted to enhance the feature attributes of the samples.Second,the structure of the dual-branch network is constructed,and the residual attention sub-network is used to assist the transfer learning sub-network to train the parameters of the network model.Finally,the method of tail ensemble learning is used to fuse the features of the dual network to obtain the model parameters of the dehazed image,so as to complete the image restoration task.The experimental results show that the algorithm proposed in the paper improves the PSNR index by 1.87 dB and 4.22 dB on the RESIDE dataset and the O-HAZE dataset respectively compared to GCANet,and the SSIM index on the O-HAZE dataset by 6.7%compared to GCANet.
作者 李云红 于惠康 马登飞 苏雪平 段姣姣 史含驰 LI Yunhong;YU Huikang;MA Dengfei;SU Xueping;DUAN Jiaojiao;SHI Hanchi(School of Electronics and Information,Xi’an Polytechnic University,Xi’an 710048,China)
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第1期30-38,共9页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金(61902301) 陕西省科技厅自然科学基础研究计划重点项目(2022JZ-35) 陕西省教育厅自然科学基础研究计划(19JK0364) 国家级大学生创新创业训练计划(202210709012) 陕西高校青年创新团队。
关键词 图像去雾 迁移学习 卷积神经网络 注意力机制 集成学习 image dehazing transfer learning convolutional neural network attention mechanism ensemble learning
  • 相关文献

参考文献3

二级参考文献115

  • 1孙玉宝,肖亮,韦志辉,吴慧中.基于偏微分方程的户外图像去雾方法[J].系统仿真学报,2007,19(16):3739-3744. 被引量:34
  • 2Narasimhan S G, Nayar S K. Interactive(de) weathering of an image using physical models [ C ]//ICCV Workshop on Color and Photometric Methods in Computer Vision (CPM CV). Nice, France : IEEE Computer Society,2003.
  • 3Kopf J, Neubert B, Chen B, et al. Deep photo: model-based photograph enhancement and viewing [ J ]. ACM Transactions on Graphics ( SIGGRAPH Asia08 ) ,2008,27 ( 5 ) : 111-116.
  • 4Tan R T. Visibility in bad weather from a single image [ C ]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition ( CVPR ) . Alaska, USA : IEEE Computer Society, 2008 : 1-8.
  • 5Fattal R. Single image dehazing [ J ]. ACM Transactions on Graphics, 2008,27 ( 3 ) : 1-9.
  • 6He K, Sun J, Tang X. Single image haze removal using dark channel prior [ C ]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR) Miami, FL, USA : IEEE Computer Society ,2009 : 1956-1963.
  • 7Kratz L, Nishino K. Factorizing scene albedo and depth from a single foggy image [ C ]//Proceedings of IEEE International Conference on Computer Vision ( ICCV ) . Kyoto, Japan : IEEE Computer Society,2009 : 1701-1708.
  • 8Tarel J, Hauti N. Fast visibility restoration from a single color or gray level image [ C ]//Proceedings of IEEE International Conference on Computer Vision ( ICCV ) . Kyoto, Japan : IEEE Computer Society,2009 : 2201-2205.
  • 9Paris S, Durand F. A fast approximation of the bilateral filter using a signal processing approach[ J ]. International Journal of Computer Vision ,2007,81 ( 1 ) :24-52.
  • 10Land E H, McCann J J. Lightness and retinex theory [ J ]. Journal of the Optical Society of America, t 971,61 ( 1 ) : 1-11.

共引文献127

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部