期刊文献+

Symmetric Reduction and Hamilton-Jacobi Equations of the Controlled Underwater Vehicle-Rotor System

原文传递
导出
摘要 .As an application of the theoretical results,in this paper,we study the symmetric reduction and Hamilton-Jacobi theory for the underwater ve-hicle with two internal rotors as a regular point reducible RCH system,in the cases of coincident and non-coincident centers of the buoyancy and the gravity.At first,we give the regular point reduction and the two types of Hamilton-Jacobi equations for a regular controlled Hamiltonian(RCH)system with sym-metry and a momentum map on the generalization of a semidirect product Lie group.Next,we derive precisely the geometric constraint conditions of the reduced symplectic forms for the dynamical vector fields of the regular point reducible controlled underwater vehicle-rotor system,that is,the two types of Hamilton-Jacobi equations for the reduced controlled underwater vehicle-rotor system,by calculations in detail.These work reveal the deeply internal relationships of the geometrical structures of the phase spaces,the dynamical vector fields and the controls of the system.
作者 Hong Wang
出处 《Communications in Mathematical Research》 CSCD 2023年第4期575-644,共70页 数学研究通讯(英文版)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部