摘要
为了解决手机芯片屏蔽壳表面白印缺陷微小、尺度各异等因素影响检测快速性和准确性的问题,本文提出一种基于长短连接通路和双注意力网络(long short link and double attention network,LSDANet)的手机芯片屏蔽壳表面缺陷检测方法。首先,通过构建基于编码和解码的语义分割模型和利用长短距离连接通路,提高网络模型对尺度各异缺陷的特征提取能力。其次,分别设计基于通道和空间的注意力机制,增大5—10pixel尺寸的白印缺陷在空间和通道上的特征权重。最后,融合双注意力机制和长短距离连接通路分割模型,构建LSDANet缺陷检测网络,应用于手机芯片屏蔽壳表面缺陷检测。实验数据表明,LSDANet网络能够达到96.21%的平均像素精度、66.13%的平均交并比和39.03的每秒检测帧数,相比多种语义分割算法均具有更高的检测精度和速度。
To address the issues that the detection rapidity and accuracy are disturbed by the tiny defects,different scales and other factors on the surface white print of the mobile phone chip shielding shell,an long short link and double attention network(LSDANet)-based surface defect detection method is devised in this paper.First,the feature extraction ability of the network model for defects with different scales is enhanced via constructing an encoding and decoding-based semantic segmentation model and utilizing the long short-distance connection path.Second,the feature weights of white print defects with a size of 5to 10pixel in space and channel are increased via designing the space-and channel-based attention mechanisms,respectively.Ultimately,a LSDANet defect detection network using the dual attention mechanism and long short-distance connection path segmentation model is proposed for surface defect detection of the mobile phone chip shielding shell.The experimental results demonstrate that the detection performances of the LSDANet-based algorithm in mean pixel accuracy,mean intersection over union and frames per second are 96.21%,66.13%and 39.03,which are superior to the other semantic segmentation methods in terms of detection precision and speed.
作者
刘克平
刘博浩
李岩
宋誉
LIU Keping;LIU Bohao;LI Yan;SONG Yu(Electrical and Electronic Engineering College,Changchun University of Technology,Changchun,Jilin 130012,China;Dongguan Sanrui Automation Technology Corporation,Dongguan,Guongdong 523000,China)
出处
《光电子.激光》
CSCD
北大核心
2024年第1期67-74,共8页
Journal of Optoelectronics·Laser
基金
国家自然科学基金(61773075)
吉林省教育厅产业化研究项目(JJKH20210767KJ)资助项目。
关键词
深度学习
屏蔽壳
缺陷检测
语义分割
deep learning
chip shielding shell
defect detection
semantic segmentation