期刊文献+

基于知识图谱关系路径的多跳智能问答模型研究 被引量:2

Knowledge Graph Relation Path Network for Multi-Hop Intelligent Question Answering
下载PDF
导出
摘要 多跳问题是一类通过知识推理才能给出答案的复杂问题,往往需要相关的多项关联知识融合生成最终答案.现有基于知识图谱的多跳智能问答方法推理过程比较复杂,没有考虑关系路径蕴含的结构信息和语义信息.为此,本文提出了基于知识图谱关系路径的多跳智能问答模型,将多跳智能问答问题转换为在低维向量空间中查找知识图谱中最优关系路径的问题.该模型利用表示学习将知识图谱和用户问题同时嵌入到低维的向量空间,实现知识空间和问题空间的统一表示;然后结合主题实体向量表示和问题向量表示对候选实体进行语义评分,产生候选答案集合;以问题实体为起始节点,以候选答案实体为结束节点,从知识图谱中抽取与问题相关的关系路径集合;将关系路径进一步嵌入到低维的向量空间,生成关系路径的向量表示,在向量空间中查找与问题语义匹配度最高的关系路径,最终根据关系路径生成多跳问题的答案.在公开的数据集上对所提出的模型进行了实验,结果表明该方法与现有方法相比不仅具有良好的性能,而且具有良好的稳定性,不会随着问题跳数的增加而降低性能. Complex multi-hop questions require knowledge reasoning to provide answers,which often involves integration of multiple pieces of knowledge to generate final answer.The existing knowledge graph(KG)-based multi-hop intelligent question answering methods often have complicated inference processes and do not consider structural and semantic information embedded in relation paths.To solve this problem,this paper proposes a knowledge graph relation path network for multi-hop intelligent question answering.It transforms the multi-hop intelligent question answering task into an optimization task of finding optimal relation path from KG.In this network,both the KG and question are embedded into low-dimensional vector spaces,and their unified vector representations are obtained.The topic entity and the question entity are combined to perform semantic scoring for generating candidate answers.Starting from the question entity and ending with candidate answers,a set of relation paths relevant to the question from the KG is extracted.The relation paths are further embedded into low-dimensional vector space to generate vector representations.By searching for the relation path with the highest semantic matching degree to the question in the vector space,the answer to the multi-hop question is generated.Experimental results on public datasets show that the proposed method has not only good performance but also good stability compared to the existing methods,and the performance does not decrease with the increase of problem hops.
作者 张元鸣 姬琦 徐雪松 程振波 肖刚 ZHANG Yuan-ming;JI Qi;XU Xue-song;CHENG Zhen-bo;XIAO Gang(College of Computer Science&Technology,Zhejiang University of Technology,Hangzhou,Zhejiang 310023,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2023年第11期3092-3099,共8页 Acta Electronica Sinica
基金 浙江省“尖兵”“领雁”研发攻关计划项目(No.2023C01022) 国家自然科学基金(No.61976193)。
关键词 智能问答 知识图谱 复杂多跳问题 关系路径 表示学习 knowledge graph intelligent question answering complex multi-hop question relation path representation learning
  • 相关文献

参考文献2

二级参考文献3

共引文献11

同被引文献11

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部