摘要
以贝叶斯参数优化的XGBoost算法为基础,基于机组特征和煤炭特性建立BayesianOpt-XGBoost预测模型,其发电、供热碳排放因子预测的相关系数R^(2)分别为0.91和0.87,绝对误差百分比为2.51%和2.91%.进一步,通过特征标准化方法减少对煤炭特性的依赖,模型预测R2分别为0.79和0.77,绝对误差百分比为3.94%和2.75%,精度仍可得到保障.基于该模型分析全国各省区煤电机组碳排放因子并与公布数据进行比较,证明了该模型的有效性.对机组预测结果的分析表明对现存的低容量机组进行改造、对新建造电机组采用大容量高参数可以减少碳排放强度.
A Bayesian-Opt-XGBoost model was established on the basis of the features of power generation units and coals,in which the parameters were optimized with Bayesian.The prediction of the carbon emission factors of power and heat generation of coal-fired power plants had coefficients of(R^(2))of 0.91 and 0.87,respectively,the corresponding mean absolute errors are 2.51%and 2.91%.Normalization methods were used to get rid of the dependence on coal's features,the corresponding R2 values were 0.79 and 0.77 respectively,and the mean absolute errors were 3.94%and 2.75%,the accuracy can still be acceptable.With the model,the carbon emission factors of coal power units in different provinces of China were estimated and compared with the published data,which proved the valid of this model.The analysis of the above estimated results shown that the carbon emission intensity of coal-fired power industry can be reduced by reforming the existing low-capacity units and building large capacity and high parameters units for newly plants.
作者
赵敬皓
王娜娜
蒋嘉铭
田亚峻
ZHAO Jing-hao;WANG Na-na;JIANG Jia-ming;TIAN Ya-jun(Extended Energy Big Data and Strategy Research Center,Qingdao Institute of Bioenergy and Bioprocess Technology,Chinese Academy of Sciences,Qingdao 266101,China;Shandong Energy Institute,Qingdao 266101,China;Qingdao New Energy Shandong Laboratory,Qingdao 266101,China;College of Information Science and Technology,Qingdao University of Science and Technology,Qingdao 266061,China)
出处
《中国环境科学》
EI
CAS
CSCD
北大核心
2024年第1期417-426,共10页
China Environmental Science
基金
中国工程院院地合作项目(2022sx4)。
关键词
碳核算
煤电碳排放因子预测
贝叶斯参数优化
XGBoost
特征标准化
carbon accounting
coal-fired power units carbon emission factors prediction
Bayesian optimization
XGBoost
feature normalization