期刊文献+

基于生存分析的智能电网安全告警事件持续时间预测模型

PREDICTION MODEL OF SMART NETWORK SECURITY ALARM EVENT DURATIONBASED ON SURVIVAL ANALYSIS
下载PDF
导出
摘要 针对目前智能电网安全风险预测系统解释性不强的问题,提出一种基于生存分析中DeepSurv模型的改进模型来预测网络安全告警事件持续时间。为了加快运算速度,模型对原DeepSurv的神经网络部分进行改进。模型基于K-means,提出一种降维算法对输入数据进行降维,通过改进的DeepSurv,获得智能电网安全告警事件持续时间的生存函数,并以此为依据计算C-index与MAPE。通过总耗时、C-index与MAPE这三个指标将模型和原DeepSurv进行比较,发现模型在预测准确率相差不大的情况下,大幅提高了运算速度。此外,由于模型是基于生存分析的,解释性较强,且能够提供网络安全告警事件关于持续时间的生存函数,即关于持续时间的概率预测,对智能电网安全风险预测研究有很大的参考意义。 To solve the problem that the current smart electric network security prediction system is not sufficiently interpreted,an improved model based on the DeepSurv model in survival analysis is proposed to predict the duration of network security alarm events.In order to speed up the operation speed,the neural network part of the original DeepSurv is improved.Based on K-means,a dimensionality reduction algorithm was proposed to reduce the input data.Through the improved DeepSurv,the survival function of the duration of the smart electric network security alarm event was obtained,and the C-index and MAPE were calculated on this basis.By comparing the model with the original DeepSurv in terms of total time consuming,C-index and MAPE,it is found that the model significantly improved the operation speed while the prediction accuracy was not much different.In addition,as the model is based on survival analysis,it has strong explanatory power and can provide the survival function of network security alarm event on duration,namely,probability prediction on duration,which is of great reference significance for the research of smart electric network security risk prediction.
作者 刘萧 李静 许珂 Liu Xiao;Li Jing;Xu Ke(State Grid Sichuan Electric Power Company Information and Communication Corporation,Chengdu 610041,Sichuan,China)
出处 《计算机应用与软件》 北大核心 2024年第1期328-335,342,共9页 Computer Applications and Software
基金 国网四川省电力公司科技项目(SGSCXT00XGJS2000191)。
关键词 智能电网 网络安全告警事件 生存分析 神经网络 持续时间预测 Smart electric network,Network security alarm events Survival analysis Neural network Prediction of duration
  • 相关文献

参考文献5

二级参考文献32

  • 1陈秀真,郑庆华,管晓宏,林晨光.层次化网络安全威胁态势量化评估方法[J].软件学报,2006,17(4):885-897. 被引量:342
  • 2王慧强,赖积保,朱亮,梁颖.网络态势感知系统研究综述[J].计算机科学,2006,33(10):5-10. 被引量:126
  • 3任伟,蒋兴浩,孙锬锋.基于RBF神经网络的网络安全态势预测方法[J].计算机工程与应用,2006,42(31):136-138. 被引量:71
  • 4Tim Bass.Intrusion detection systems and multisensor data fusion[J]. Communications of the ACM . 2000 (4)
  • 5Sample, Char,Schaffer, Kim.An Overview of Anomaly Detection. IT Professional Magazine . 2013
  • 6Jan G Bazan,Stanislawa Bazan-Socha,Sylwia Buregwa-Czuma et al.Classifiers Based on Data Sets andDomain Knowledge:A Rough Set Approach. Intelligent Systems Reference Library . 2013
  • 7Giusj Digioia,Chiara Foglietta,Gabriele Oliva,Stefano Panzieri.Aware online interdependency modelling via evidence theory. International Journal of Critical Infrastructures . 2013
  • 8G rnitz N,Kloft M,Rieck K, et al.Toward Supervised Anomaly Detection. Journal of ArtificialIntelligence Research . 2013
  • 9Jeffrey M,Bradshaw,Carvalho M,et al.Sol:An agent-based framework for cyber situation awareness. Künstliche Intelligenz . 2012
  • 10赵国生,王慧强,王健.基于灰色Verhulst的网络安全态势感知模型[J].哈尔滨工业大学学报,2008,40(5):798-801. 被引量:28

共引文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部