摘要
【目的】探索颠覆性专利的知识扩散规律,丰富颠覆性专利研究。【方法】利用颠覆性指数从USPTO数据库中识别高颠覆性专利,分别从引文量和共引耦合数匹配控制组专利,从引文分布和引文网络特征两方面分析高颠覆性专利的知识扩散特征,并构建回归模型揭示核心特征。【结果】高颠覆性专利存在授权后1~3年达到引文起飞点,3~5年速度达到巅峰,第6年起速度下降的规律。高颠覆性专利与控制组专利在知识扩散强度、知识扩散效率、局部和全局知识扩散能力等方面具有显著差异。首次引用年引用数、首次高峰间隔年和首次高峰年引用数指标,以及低引文代的平均路径长度、平均聚类系数和连通性指标有助于识别高颠覆性专利。【局限】颠覆性指数会随时间发生波动,本研究按时间区间选择高颠覆性专利,其颠覆性指数值尚不稳定。【结论】研究从专利被引角度揭示颠覆性技术的知识扩散特征,研究发现能够为颠覆性技术识别提供理论支持。
[Objective]This paper explores the knowledge diffusion of disruptive patents.[Methods]First,we used the disruption index to identify highly disruptive patents from the USPTO database.Then,we matched the patents of the control group according to the number of citations and co-citation couplings.Third,we analyzed the knowledge diffusion characteristics of highly disruptive patents from citation distribution and citation network characteristics.Finally,we built a regression model to reveal the core features.[Results]The citation take-off point of highly disruptive patents appeared 1 to 3 years after authorization.The increasing speed peaked in 3 to 5 years and decreased from the 6th year.Significant differences exist between highly disruptive and control group patents in knowledge diffusion intensity,efficiency,local and global knowledge diffusion capabilities,etc.First citation-year,first-peak interval-year,and first-peak-year citation metrics,average path length,average clustering coefficient,and connectivity metrics for low-citation generations help us identify highly disruptive patents.[Limitations]The disruption index fluctuates over time.This study selects highly disruptive patents according to the time interval,and its disruption index value is not yet stable.[Conclusions]The study reveals the knowledge diffusion characteristics of disruptive technologies from the perspective of patent citations and provides theoretical support for identifying disruptive technologies.
作者
潘一如
毛进
李纲
Pan Yiru;Mao Jin;Li Gang(School of Information Management,Wuhan University,Wuhan 430072,China;Center for the Studies of Information Resources,Wuhan University,Wuhan 430072,China)
出处
《数据分析与知识发现》
EI
CSSCI
CSCD
北大核心
2023年第10期1-14,共14页
Data Analysis and Knowledge Discovery
基金
国家自然科学基金创新研究群体项目(项目编号:71921002)
国家自然科学基金面上项目(项目编号:72174154)的研究成果之一。
关键词
颠覆性技术
专利
知识扩散
引文网络
引文分布
Disruptive Technology
Patent
Knowledge Diffusion
Citation Network
Citation Distribution