期刊文献+

基于多尺度特征融合的图像压缩感知重构

Image Compression Sensing Reconstruction Based on Multi-Scale Feature Fusion
下载PDF
导出
摘要 图像压缩感知(CS)重构方法旨在将采样过后的图像恢复为高质量图像。目前,基于深度学习的CS重构算法在重构质量及速度上性能优越,但在较低采样率时存在图像重构质量较差的问题。为此,提出一种基于多尺度注意力融合的图像CS重构网络,在网络中引入多个多尺度残差块提取图像不同尺寸的信息,并融合每个多尺度残差块的空间注意力与密集残差块的通道注意力,自适应地将局部特征与全局依赖性集成,从而提升图像重构质量。实验表明,所提算法在图像的PSNR、SSIM上均优于其他经典方法,重构性能更好。 Image compressed sensing(CS)reconstruction method aims to restore the sampled image to a high-quality image.At present,CS reconstruction algorithm based on deep learning has superior performance in reconstruction quality and speed,but it has the problem of poor image reconstruction quality at low sampling rate.Therefore,an image CS reconstruction network based on multi-scale attention fusion is pro-posed.Multiple multi-scale residual blocks are introduced into the network to extract the information of different sizes of images,and the spa-tial attention of each multi-scale residual block and the channel attention of dense residual blocks are fused.The local features and global de-pendencies are adaptively integrated to improve the quality of image reconstruction.Experimental results show that the proposed algorithm is superior to other classical methods in PSNR and SSIM,and has better reconstruction performance.
作者 何卓豪 宋甫元 陆越 HE Zhuohao;SONG Fuyuan;LU Yue(Engineering Research Center of Digital Forensics,Ministry of Education,Nanjing University of Information Science and Technology;School of Computer Science,Nanjing University of Information Science and Technology,Nanjing 210044,China)
出处 《软件导刊》 2024年第1期156-160,共5页 Software Guide
基金 国家自然科学基金项目(62172232)。
关键词 压缩感知 注意力机制 深度学习 多尺度特征提取 compression sensing attention mechanism deep learning multi-scale feature extraction
  • 相关文献

参考文献1

二级参考文献3

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部