期刊文献+

Shape and diffusion instabilities of two non-spherical gas bubbles under ultrasonic conditions

下载PDF
导出
摘要 Ultrasonic cavitation involves dynamic oscillation processes induced by small bubbles in a liquid under the influence of ultrasonic waves. This study focuses on the investigation of shape and diffusion instabilities of two bubbles formed during cavitation. The derived equations for two non-spherical gas bubbles, based on perturbation theory and the Bernoulli equation, enable the analysis of their shape instability. Numerical simulations, utilizing the modified Keller–Miksis equation,are performed to examine the shape and diffusion instabilities. Three types of shape instabilities, namely, Rayleigh–Taylor,Rebound, and parametric instabilities, are observed. The results highlight the influence of initial radius, distance, and perturbation parameter on the shape and diffusion instabilities, as evidenced by the R_0–P_a phase diagram and the variation pattern of the equilibrium curve. This research contributes to the understanding of multiple bubble instability characteristics, which has important theoretical implications for future research in the field. Specifically, it underscores the significance of initial bubble parameters, driving pressure, and relative gas concentration in determining the shape and diffusive equilibrium instabilities of non-spherical bubbles.
作者 包乌日汗 王德鑫 Wurihan Bao;De-Xin Wang(College of Physics and Electronics,Inner Mongolia Minzu University,Tongliao 028043,China)
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期715-721,共7页 中国物理B(英文版)
基金 Project supported by the Scientific Research Project of Higher Education in the Inner Mongolia Autonomous Region (Grant No.NJZY23100)。
  • 相关文献

参考文献1

二级参考文献35

  • 1Gaitan D F and Crum L A 1992 J. Acoust Soc. Am. 91 3166.
  • 2Barber B P, Hiller R A, Lofstedt R, Putterman S J and Weninger K R 1997 Phys. Rep. 281 65.
  • 3Leighton T G 1994 The Acoustic Bubble (London: Academic).
  • 4Lauterborn W, Kurz T, Mettin R and Ohl C D 1999 Adv. Chem. Phys. 110 295.
  • 5Walton A J and Reynolda G T 1984 Adv. Phys. 33 595.
  • 6He S J, Jiang H and Liu L F 2010 J. Phys. B: At. Mol. Opt. Phys. 43 025403.
  • 7He S J, Jing H, Li X C, Li Q, Dong L F and Wang L 2007 J. Phys. B: At. Mol. Opt. Phys. 40 3983.
  • 8Burnett P D S, Chambers D M, Heading D, Machacek A, Schnittker M, Moss W C, Young P, Rose S, Lee R W and Wark J S 2001 J. Phys. B: At. Mol. Opt. Phys. 34 L511.
  • 9Lu Z Z, Luo J, Shao C G and Yu L Y 2000 J. Phys. B At. Mol. Opt. Phys. 33 4495.
  • 10Hiller R, Weninger K, Putterman S J and Barber B P 1994 Science 266 248.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部